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Time-resolved atomic-resolution Brownian tomography
of single nanocrystals reveals size-dependent dynamics

Rubén Meana-Paiieda’, Canran Ji'?, CongT.S. Van', Cyril F. Reboul’, Sungsu Kangs, Sungin Kim?,
Jinho Rhee®®, Yunseo Lee®®, Peter Ercius’, Wojciech Czajaz, Jungwon Park’>%®°%, Hans EImlund'*

Atomic-resolution structure identification of nanocrystals by graphene liquid cell electron microscopy (GLC-EM)
has revealed that small, solubilized platinum nanocrystals consist of an ordered crystalline core surrounded by
mobile surface atoms, which dissociate during oxidative etching, resulting in distinct temporal structural states.
Requirements imposed by the 3D reconstruction algorithm limit the number of structural states that can be re-
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solved. We introduce a regularized 3D reconstruction algorithm that exploits the redundancy inherent in the ex-
perimental data, allowing us to improve the time resolution. Our developments provide a comprehensive
molecular picture at unprecedented spatial and temporal resolution of the nonlinear, linear, and fluctuating dy-
namic phenomena that single nanocrystals undergo during the GLC-EM experiment. We determined atomic struc-
tures of 66 temporal structural states, extracted from 15 time trajectories of individual nanocrystals. Large (478 to
698 atoms) and small (<300 atoms) nanocrystals show etching that preserves a stable core, whereas mid-sized
(351 to 571 atoms) nanocrystals present dynamics that change the coordination of the core.

INTRODUCTION

The field of nanoscience largely lacks methods to probe nonequilib-
rium species in nanomaterials, with a few notable exceptions (1, 2),
and robust methods for three-dimensional (3D) structure determi-
nation of nanocrystals in solution have proven extremely difficult to
develop. Presynthesized nanocrystals are susceptible to subsequent
rearrangements in solution through surface atom desorption and
adsorption, coalescence, and dissolution following Ostwald ripen-
ing (3, 4). 3D structure determination of single nanocrystals in solu-
tion by graphene liquid cell electron microscopy (GLC-EM) and
single-particle analysis (2, 5-7) may provide answers to long-sought
physical models for nanocrystal formation, growth, and dissolution.
However, several fundamental limitations need to be overcome be-
fore the method can become a robust route to probing nonequilib-
rium nanocrystal species. This study represents a major step in this
direction.

In biological single-particle cryo-electron microscopy (8), exper-
imental measurements are abundant, and the main challenges are the
extreme levels of noise (9) and the molecular heterogeneity of the
single-particle ensemble (10). In contrast, transmission electron mi-
croscopy (TEM) images of metallic nanoparticles have higher signal-
to-noise ratio (SNR) because the difference in phase contrast between
the light atom background (graphene and water) and the heavy me-
tallic atoms is relatively large. However, we are imaging nanocrystals
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undergoing time-dependent structural changes of unknown nature
at unknown timescales. Direct electron detectors available for in-
solution experiments can be used to acquire a few tens of thousands
of single-nanoparticle 2D views in different 3D orientations, ob-
tained over a few tens of seconds at high electron dose. Unless the
rotational freedom of the nanocrystal is completely unrestricted,
which is rarely the case, we are faced with the problem of trying to
obtain atomic-resolution 3D movies of dynamic structural phenom-
ena from a set of differently projected 2D views of a nanocrystal with
limited rotational sampling. This problem requires sophisticated
methods for signal enhancement that go beyond straightforward
averaging.

Biological single-particle EM favors computational approaches
that can estimate accurate relative 3D particle orientations, on average,
in a computationally efficient manner (11-14), whereas 3D recon-
struction of metallic nanoparticles from GLC-EM images requires
very accurate and precise determination of each of the relative 3D ori-
entations because of the scarcity of recorded particle views. In biologi-
cal single-particle EM, prohibitively large 3D reconstruction errors
can be overcome by collecting more data, whereas this approach is
infeasible for nanocrystals in solution. The evaporation under electron
irradiation in ultrahigh vacuum causes rapid shrinkage of the cell to a
degree that does not allow free nanocrystal rotation. Data are collected
in Scherzer focus of an aberration corrected instrument (15). Hence,
for all practical purposes, there is no contrast transfer function (CTF)
(16) to account for. The model that we seek to estimate is typically well
represented by a periodic arrangement of atoms, and sophisticated
regularization approaches involving the CTF are not needed. There-
fore, more directly applicable approaches for regularization compared
to those used in biological single-particle EM can be pursued.

This study introduces three principal innovations to nanoparti-
cle 3D reconstruction with GLC-EM to enable time-resolved quan-
titative 3D structure analysis at the highest possible temporal and
spatial resolution. First, the atomic model building is coupled in an
iterative manner to the method that we previously developed for
estimating the relative 3D orientations (5-7). Second, denoising of
the nanoparticle time trajectory through nonlinear dimensionality
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reduction before 2D and 3D registration overcomes the need for
anisotropic motion correction and averaging of contiguous movie
frames in small time windows, as previously described (7). Third, to
account for further variability within the discrete temporal state
groups, for example, due to regional surface disorder, or partial oc-
cupancy of associating atoms, we introduce a method for adaptive
nonuniform regularization based a spatially varying real-space pri-
or that optimizes the atomicity of the reconstructed 3D density
maps. With these methodological advancements, we could reliably
reconstruct 66 atomic-resolution 3D density maps from 15 previ-
ously acquired nanocrystal time trajectories (2, 5-7). In addition to
allowing estimation of the rate of structural change, our analysis en-
abled estimation of time-dependent atomic lattice and shape prop-
erties. Below, we provide time-dependent statistics of various
atomic lattice descriptors, such as coordination number (CN), ra-
dial strain, and crystallinity score. The ability to measure dynamic
atomic parameters in space and time represents the next frontier of
structural studies in solution.

RESULTS

Our previous developments for 3D reconstruction of nanocrystal
time trajectories (2, 5-7) suffered from issues with convergence sta-
bility and had to be repeated multiple times to ensure convergence to
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a global optimum. If the foreground atomic contrast managed to
drive the 3D reconstruction process to early convergence, then inter-
pretable atomic-resolution 3D reconstructions could be obtained.
However, if background signal from the solvent and the graphene
started biasing the 3D reconstruction, convergence stalled, and the
maps became streaky and problematic with poorly defined atomicity.
To overcome this problem, we here introduce a method that couples
the iterative 3D refinement with unsupervised atomic model build-
ing and applies a spatially varying real-space prior that optimizes the
atomicity of the reconstructed density maps (Materials and meth-
ods). Figure 1 provides a schematic overview of our method.

We reanalyzed seven time trajectories that we previously analyzed
with earlier generations of our 3D reconstruction methodology, four
from (5) (NP3, NP1, NP4, and NP5 in fig. S1A) and three from (17)
(NP1, NP2, and NP7 in fig. S1B). In addition to the added value that
the time-dependent structural information gives with our methodol-
ogy, we also obtained substantially improved 3D reconstruction
quality in five of the seven tests and maps of comparable quality in the
remaining two tests, as measured by the average correlation between
the experimentally reconstructed atomic densities and simulated
atomic densities (7, 17). NP3 from (5) showed an average improve-
ment of 19.2% in atom correlation, and the closest matching tempo-
ral state differed in composition by 2.3% of the total mass. NP1 from
(5) showed similar atom correlation of ~0.8 in the time-segmented
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Fig. 1. Schematic summary of our method for regularized nanoparticle 3D reconstruction. Individual nanoparticle projections, denoised with kernel-principal com-
ponents analysis (kPCA), are matched with reprojections of the 3D density map. Reprojections of the simulated density map are used for seeding the projection matching
and reprojections of the reconstructed density are used in the iterations that follow. After one cycle of iterative 3D orientation refinement with projection matching is
completed, atom segments and their center coordinates are identified in an unsupervised fashion using automated map and atom peak thresholding. A simulated den-
sity is produced from the atomic coordinates and used to reseed the next cycle of the process. The real density was rendered at slightly higher sigma value in the picture
that demonstrates the unsupervised atom detection to include some nonatom noisy background signal and illustrate the power of the automated map/atom threshold-

ing. ICM, iterated conditional mode; FT, Fourier transform.
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maps versus the time-integrated map and a 3.9% difference in com-
position of the closest matching state. NP4 from (5) showed similar
atom correlation of ~0.75 in the time-segmented maps versus the
time-integrated map and but the difference a higher compositional
difference (17.1%) of the closest matching temporal state. NP5 from
(5) showed an average improvement of 10% in atom correlation and
a compositional difference of 11.6% in the closest matching temporal
state. NP1 from (17) showed an average improvement of 14.4% in
atom correlation and a substantial difference in composition (19.2%)
in the closest matching temporal state. NP2 from (17) showed an av-
erage improvement of 2.8% in atom correlation and difference in
composition of 19.4% in the closest matching temporal state. NP7
from (17) showed an average improvement of 16.9% in atom correla-
tion and difference in composition of 13.9% in the closest matching
temporal state. Overall, the regularized 3D reconstruction approach
identifies fewer atoms with improved atomicity overall. The most
dramatic improvements are seen in NP3 and NP4 from (5) and in
NP1 and NP7 from (I7) In these instances, the surface structure is
much better defined in the maps obtained with regularized time-
resolved 3D reconstruction. The facets of the nanocrystal are re-
solved, which is a strong indication that alignment errors have been
reduced, and compositional surface variations resolved.

Time-resolved atomic-resolution 3D reconstruction of 15
nanocrystal time trajectories

Trial time segment boundaries were identified on the basis of repro-
jection correlation plots (fig. S2), which plot the correlation between
reprojections of the time-averaged 3D reconstruction and the indi-
vidual nanocrystal views in the time trajectory as a function of time.
Any major 3D structural differences between the time-averaged 3D
reconstruction and the individual nanocrystal views will be reflect-
ed in the magnitude of the correlation. This resulted in an initial
division of each trajectory into one to four contiguous time seg-
ments. Independent 3D reconstructions were obtained from these
segments before conducting further splitting. Further splitting of
the time trajectory was a process of trial and error, splitting further
and further until reliable 3D reconstructions and associated atomic
models could not be produced. Three to eight time-windowed
atomic-resolution 3D reconstructions, ranging in time window size
from 2.5 to 19.8 s, with an average segment size of 7.2 + 4.0 s, were
obtained per nanocrystal time trajectory. We selected the size of the
time windows to allow successful atomic-resolution 3D reconstruc-
tion with sufficient rotational coverage, which does not necessarily
reflect the physical lifetime of the reconstructed temporal states.
However, we find it unlikely that there would be major structural
transitions occurring within the individual segments analyzed be-
cause of the exceptionally high quality of the maps produced. In
those instances where reliable atomic-resolution 3D reconstructions
and associated atomic coordinates could be determined of highly
similar structural states that were neighbors in time, we could ascer-
tain the degree of structural stability with high confidence and com-
pare atom association/dissociation rates between different time
segments. It is also important to characterize strain, the relative de-
formation of the nanocrystal when compared to an ideal face-
centered cubic (FCC) lattice. Strain is an important descriptor that
accounts for the reactivity of Pt nanocrystals in important catalytic
reactions, including the methanol oxidation reaction and the oxy-
gen reduction reaction (18, 19) as strain modifies the local binding
energy of adsorbates by changing the bandwidth of the d orbitals
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(20). We obtained 3D strain maps for each temporal structural state,
as described in Materials and Methods.

Findings for all trajectories are summarized in table S1. Defini-
tions for the different categorizations used are summarized in ta-
ble S2. We began analyzing the results for the smallest nanocrystal
[trajectory ESC5 (etching with stable core 5); Fig. 2A]. This nanocrys-
tal has 182 atoms in the initial temporal state and 163 atoms in the
final state. It loses 10% of its total mass through etching while main-
taining a stably coordinated core of atoms. The fraction of atoms with
CN > 8 decreases linearly throughout the trajectory from 59 to 53%.
We previously reported that crystal abnormalities resulting from sur-
face interactions with ligands, the solvent, and the electron beam have
a “penetration depth” 8 beyond which the nanocrystal approximates
an ideal FCC lattice (17). It is at this depth that a transition occurs
within the nanocrystal itself from a lowly coordinated irregular sur-
face to a highly coordinated core. An increase in penetration depth
with time would indicate an increase in surface disorder and irregu-
larity, whereas a decrease in penetration depth means that a larger
fraction of the total number of atoms of the nanocrystal is part of the
highly coordinated core. The penetration depth only shows minor
variations over the ESC5 trajectory, with an overall increase of 0.32 A
(~8% of the lattice parameter of bulk Platinum). ESC5 has one of the
most stable structures observed in this study.

Next, we turned to trajectory FCHCS]1 (fluctuating atom compo-
sition, high core stability 1; Fig. 2B), showing a nanocrystal with
fluctuating atomic composition and high core stability. The first
three time-segments, spanning the first 10 s, show nearly identical
structures, indicating a high degree of stability. The change in pen-
etration depth and degree of coordination in the first 10 s are minor,
whereas the average radial strain peaks at 23 s, right before the loss
of 13% of the total mass of the particle in the last transition, and re-
version back into a final temporal state with nearly identical compo-
sition compared to the initial three states. The end state has the
largest penetration depth and the least coordinated core of the four
FCHCS1 time segment structures.

Trajectory ESIP1 (etching with stable initial phase 1; Fig. 2C) dis-
plays an equally high degree of stability, with three identical time
segment 3D reconstructions spanning the first 15 s, followed by a
rapid dissolution event (—8.3 atoms/s). The penetration depth re-
mains unchanged with time, and the particle only loses 13% of its
total mass during imaging. This high degree of structural stability is
the hallmark of small (163 to 285 atoms) nanocrystals.

Next, we turned to trajectory EFC4 (etching with fluctuating
core 4; Fig. 2D), which represents a nanocrystal of 316 atoms that
undergoes etching with fluctuating core to lose 30% of its total mass.
This is the first example of a nanocrystal with a core fluctuating be-
tween 60 and 64% of atoms with CN > 8 across the trajectory. The
penetration depth is also fluctuating with time, indicating that when
nanocrystals have reached this size, there is a correlation between
dynamic effects at the surface and the stability of the core.

Trajectory EFC2 (Fig. 2E) also undergoes etching with a fluctuat-
ing core, but this nanocrystal of 337 atoms displays a much more
dramatic dissolution trajectory with a highly nonlinear overall etch-
ing process proceeding over three structurally stable phases. The
penetration depth peaks at 20 s, which is the point at which the core
is the least coordinated. Hence, the reconstruction at 20 s likely rep-
resents a transient intermediate in the dissolution trajectory. The
average radial strain accumulates throughout the trajectory and
reaches its peak after 36 s. The structure with the highest stability
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Fig. 2. Evolution of the nanocrystal structures as a function of time. The individual atoms are color-coded according to CN. The four plots below the trajectory of 3D
atomic coordinates show as a function time: the penetration depth, the average radial strain, the fraction of atoms with CN > 8, and the average and SD of the correlation
between the individual atomic densities and the density of a simulated atom, as described in the main text. (A) ESC5 trajectory, an example of etching with stable core.
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appears in the end of the EFC2 trajectory, with three remarkably
similar temporal states of 209, 196, and 203 atoms, respectively, ex-
tracted from the last ~20 s of the ~40-s-long trajectory. The last of
the three temporal states in the first structurally stable phase of the
EFC2 trajectory shows a peak in core coordination at 15 s. The first
temporal state in the third and last structurally stable phase of the
EFC2 trajectory, right after the second major transition, show a sec-
ond peak in core coordination at ~30 s.

The FC1 trajectory (fluctuating core 1; Fig. 2F) undergoes dy-
namics leading to a small amount of growth (3% of the total mass).
In the first 15 s of the FC1 trajectory, the nanocrystal undergoes
highly linear etching, losing 10% of its total mass. During this phase,
the fraction of atoms with CN > 8 is reduced from 67 to 61%. The
nanocrystal then undergoes rapid growth with a growth rate of
13.2 atoms/s between the fifth and the sixth time segment. The final
etching phase takes the nanocrystal from 398 to 362 atoms with a
concomitant increase in strain and penetration depth.

Next, we analyzed the ESC3 trajectory (Fig. 2G). This larger
nanocrystal of 478 atoms loses 43% of its mass through etching
while preserving a stable core. The ESC3 dissolution dynamics is
highly linear, and there is a large increase in penetration depth to-
ward the end of the trajectory (after 20 s) concomitant with a drop
in the fraction of highly coordinated atoms. The average radial
strain increases linearly with time, inversely proportional to the de-
gree of core coordination. However, linear dynamics are not the
norm for larger nanocrystals, as demonstrated by trajectory EFC1
(Fig. 2H) showing a nanocrystal of 533 atoms undergoing etching
with a fluctuating core to arrive at a state of 388 atoms, having lost
27% of its total mass. The % CN > 8 plot shows a sawtooth wave for
this nanocrystal, which fluctuates markedly, going from 59 to 29%
CN > 8 atoms in the first transition and from 69 to 31% CN > 8 at-
oms in the last transition. The 69% CN > 8 atoms is in the top three
highest reported values in this study, but this highly crystalline state
lasts for only 10 s before etching reduces its mass by 31% in a transi-
tion with the highest rate of change—20 atoms/s—measured in this
study. The rate of change could be much faster because we presently
do not have sufficient temporal resolution to assess exactly where
the transition occurs, but it is not slower than reported.

Last, we report our findings on the largest nanocrystal analyzed
(Fig. 2I). The ESC1 trajectory undergoes etching with a stable core
with an initial state of 698 atoms and a final state of 569 atoms, thus
losing 18% of its total mass. The dissolution dynamics are highly
linear for this nanocrystal. All the extracted statistics show strongly
linear dependency on time. The penetration depth increases linearly
as the surface structure becomes less coordinated and more irregu-
lar, the radial strain decreases close to linearly, and the fraction of
highly coordinated atoms decreases linearly with time.

An additional six trajectories are presented in fig. S3. All ana-
lyzed trajectories have high time-dependent atom correlations, indi-
cating high 3D reconstruction quality and absence of any 3D
reconstruction outliers due to, for example, limited sampling of pro-
jection directions.

Our detailed analysis enabled categorization of the type of dy-
namics observed for nanocrystals of different sizes (Table 1). In
summary, the first category of dynamics we observe is etching that
preserves a stable core throughout the entirety of the time trajectory
or a substantial part of it. This category contains the largest nano-
crystals (478 to 698 atoms) and the nanocrystals below 300 atoms in
size. The second category of dynamics observed is etching that in-
volves structural intermediates with a destabilized core structure,
either a single destabilized intermediate state (nanocrystals in the
size range of 353 to 571 atoms) or nanocrystals showing fluctuating
core coordination (size range of 351 to 533 atoms). It is remarkable
that the nanocrystals with the most stable core and the least relative
change in mass are the two smallest nanocrystals with initial states
of 242 and 182 atoms, respectively. In contrast, nanocrystals in the
size range of 300 to 600 atoms show the largest relative change in
mass and the largest change in the fraction of highly coordinated
atoms with time. Therefore, we conclude that there is a strong size
dependency on the stability of the nanocrystals, where below a cer-
tain threshold in size, the stability increases. It is also evident that
highly nonlinear dynamic phenomena, such as fluctuating core co-
ordination and fluctuating penetration depth predominantly, occur
in mid-sized nanocrystals of 316 to 533 atoms. In contrast, larger
nanocrystals of 520 to 698 atoms show linear dissolution dynamics
and linear increase in penetration depth with time.

We next calculated the radial strain for each set of atomic coordi-
nates (Materials and methods). Furthermore, to assess whether
there existed a subset of atoms that remain in similar positions
throughout the trajectory, we developed a method to identify the
“time-invariant core” of atoms (Materials and methods). Last, we
developed a scalar metric to assess the degree of crystallinity of a
nanoparticle that does not make any assumptions about the fit of an
ideal FCC lattice to the experimentally measured lattice geometry.
This “crystallinity score” represents the probability that a nanocrys-
tal atomic structure has an ideal FCC lattice geometry (Materials
and methods). These results are presented for a subset of trajectories
with noteworthy strain and core dynamics in Fig. 3. The ESC5 tra-
jectory showed a linear increase in average radial strain (Fig. 1A),
indicating an expansion of the lattice. At the atomic level, we de-
tected a strain polarity at 13 s (Fig. 3A). The time evolution of the
radial strain is not homogeneous across the atoms of the ESC5 tra-
jectory. On average, there is a positive increase in strain, but a hand-
ful of atoms at the surface and in the center show negative strain.

Table 1. Type of dynamics observed for nanocrystals of different sizes.

182-285 atoms

316-353 atoms

478-698 atoms

ESC EFC ESC
Fluctuating atom composition, high core stability Fluctuating atom composition (FAC) EFC
(FACHCQ)

Etching with stable initial phase (ESIP) ECT ECT
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Fig. 3. Quantitative time-dependent structure analysis. The top panels show evolution of radial strain at the atomic level (blue to red atom coloring), the middle pan-
els visualize the “time-invariant core” atoms (blue) and changing fringe atoms (yellow), and the lower panels show penetration depth plots for selected time segments.
The timestamp (in s) is indicated below the atomic structures showing the magnitude of the radial strain, and the crystallinity score is indicated below the time-invariant
core pictures (blue atoms). (A) ESC5 trajectory, an example of etching with stable core. (B) EFC2 trajectory, an example of etching with fluctuating core. (C) EFC1 trajec-
tory, an example of etching with fluctuating core. (D) ESC3 trajectory, an example of etching with stable core. (E) ECT2 trajectory, an example of etching with core transi-
tion. (F) FCHCS1 trajectory, an example of fluctuating composition with high core stability.

The analysis of the time-invariant core of ECS5 shows a linear de-
crease in crystallinity score over time and most of the fringe atoms
are confined to the surface. The penetration depth plots at 8 s versus
19 s indicate a slight drop in core coordination with time, but no
notable change in penetration depth.

The EFC2 trajectory shows little change in average radial strain in
the first 30 s, followed by a rapid increase (Fig. 1E). At the atomic
level, all strain is either positive or close to zero (Fig. 3B). The pattern
of change in strain magnitude with time indicates a bipartite division
of atoms with either strain close to zero or atoms with positive strain,

Meana-Pafieda et al., Sci. Adv. 11, eady1413 (2025) 6 August 2025

but the pattern varies in geometry across the trajectory. The analysis
of the time-invariant core of EFC2 indicates a classic etching pattern
with lowly coordinated surface atoms dissociating. Notably, the crys-
tallinity score of the time-invariant core peaks at 29 s, right after the
major structural transition in the dissolution trajectory. The penetra-
tion depth plots confirm that there is a disorder to order transition
somewhere between 21 and 29 s.

The EFC1 trajectory shows an initial drop in average radial strain
followed by a rapid increase toward the end of the trajectory (Fig. 1H).
At the atomic level, the strain pattern is complex, with high positive
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strain in the initial and final structures and a relaxed state at 20 s
(Fig. 3C). This relaxed state shows the highest crystallinity score of
the time-invariant core, and the penetration depth plots confirm the
disorder to order transition.

The ESC3, ECT2 (etching with core transition 2), and FCHCS1
trajectories (Fig. 3, D to F) show unremarkable time-dependent dy-
namic changes compared to the above-described trajectories. The
ESC3 trajectory shows linear increase in the average radial strain
and the highest crystallinity score for the time-invariant core in the
first 10 s (Fig. 3D).

The ECT?2 trajectory starts off in a highly relaxed state (first 20 s)
and then undergoes a rapid increase in average radial strain (fig. S3D).
The crystallinity score decreases linearly, and there is a slight drop in
core coordination at 15 s, as confirmed by the penetration depth
plots (Fig. 3E).

The FCHCS1 trajectory shows little change in the average radial
strain in the first 10 s and then a strain polarity at 13 s with two
clusters of atoms with highly positive strain confined to the surface
appears before the positive strain transcends to the entire particle
(Fig. 3F). The highest crystallinity score is observed in the first 10 s.

Last, we plotted the crystallinity score as a function of the num-
ber of atoms for all time segment structures (Fig. 4), which revealed
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Fig. 4. Crystallinity score as a function of the number of atoms. The top panel
show example structures with high crystallinity scores extracted from the indicated
trajectories (top), with the number of atoms indicated (bottom). Triangles, diamond,
and square markers correspond to the three categories of nanocrystals described
in Table 1. The two indicated outliers correspond to the two structural intermediates
in the EFC1 trajectory, with timestamps and number of atoms indicated.
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three groups of nanocrystals with distinct characteristics. The
grouping simultaneously considered the number of atoms, the na-
ture of the dynamic changes, and the crystallinity score. Small nano-
crystals (163 to 301 atoms) have crystallinity scores ranging from
0.12 to 0.83. Medium-sized nanocrystals (310 to 469 atoms) have
scores ranging from 0.51 to 0.98, and large nanocrystals (475 to 698)
have scores ranging from 0.61 to 0.99. Two outliers were identified
of temporal states with 388 and 469 atoms, respectively. Both outly-
ing states are part of the EFCI trajectory at 29 and 11 s, respectively.
We have no reason to believe that these states are artifacts due to
limited projection direction sampling (fig. S2) or poor 3D recon-
struction quality (Fig. 2H, see atom correlation plot).

DISCUSSION

We present 66 atomic structures of distinct temporal nanocrystal
states, providing a plethora of information for theoreticians pursu-
ing simulations of these types of systems. The dynamic structural
insights we have gained and the computational framework we intro-
duce for quantitative structural analysis of heterogeneous nanopar-
ticles in solution will be valuable in research fields concerned with
optimal material design in the many different areas where platinum
nanocrystals have applications (21-25).

A subset of nanocrystals remains stable in certain time segments
and then undergoes rapid and profound structural rearrangements.
Referring to these dissolution dynamics as etching is appropriate
because atoms are removed from the surface when we look at the
start and the end structures. However, given the highly nonlinear
changes in the number of atoms, the mechanism is different from
that expected from classic equilibrium physics. Whether the dy-
namic surface effects we observe have direct mechanistic relevance
to heterogeneous catalysis or are a consequence of interactions with
the electron beam cannot be determined. It is likely that radiation
damage of the organic ligands that cover the nanocrystal surface oc-
curs already at a very low electron dose (5 to 10 e—/A%), as for pro-
teins, and that we are in fact imaging nanocrystals with a damaged
passivation layer. Improved data acquisition schemes, possibly un-
der cryogenic conditions, applied to the appropriate nanocrystal
systems in conjunction with robust quantitative image processing
are needed in the future to further characterize these dynamic phe-
nomena. However, it is evident that the methodology that we put
forward for time-resolved Brownian tomography of single nano-
crystals and regularized 3D reconstruction can be applied to charac-
terize these kind of phase changes at the atomic level.

The trajectories that show the most complex nonlinear structural
dynamics also show the most complex variations in penetration depth
with time (Fig. 2, E and F), whereas trajectories that that display linear
dissolution dynamics show linear change in penetration depth with
time (Fig. 2I). The smallest structures (Fig. 2, A to C) show compara-
bly small variations in penetration depth (ESC5, Fig. 2A: change of
+0.3 A in 8 across the trajectory; FCHCSI, Fig. 2B: change of —0.35 A;
and ESIP1, Fig. 2C: change of +0.14 A), whereas the penetration
depth in the larger structures vary more (ESCI, Fig. 2I: change of
+0.54 A; ESC2, fig. S3E: change of +0.65 A; and ESC3, Fig. 3G; change
of +4.46 A). As the number of atoms in a nanocrystal increases, the
number of energetically accessible states also increases, as outlined by
Bohr’s correspondence principle (26). In contrast, smaller nanocrys-
tals can behave similar to “super atoms” with highly quantized energy
states (27). This may explain some of the trends we observe in terms

7of 11

GZ0Z ‘0T 1NBnYy Uo BI0'80US 105 MMM,/:SANY WO | P3PE0 JUMOQ



SCIENCE ADVANCES | RESEARCH ARTICLE

of the nature of the dynamic phenomena, but it is not clear from our
results where the classical limit resides. What is clear, however, is that
the smallest nanocrystals analyzed show the greatest degree of stabil-
ity, whereas nanocrystals in the ~300 to 500 atoms size range are the
most susceptible to nonlinear dynamic phenomena due to a strong
correlation between dynamical surface effects and core coordination.

The average radial strain measures the relative deviation from
perfect FCC crystallinity, and it is related to the crystallinity score.
In those instances where the inverse proportionality between the
two metrics is obvious (ESC5, R = —0.85, ESC3, R = —0.98, and
ECT2, R = —0.96), the strain changes in a more concerted manner
across the atoms of the nanocrystal (Fig. 3, A, D, and E), whereas in
those instances that do not show any significant correlation, the
strain changes in a less concerted manner at the atomic level (Fig. 3,
B, C, and F). Mechanistically, a possible explanation for this phe-
nomenon is that energy perturbations, either because of electron
beam interactions or chemical changes, have long-ranging effects
that influence the nanocrystal distinctly depending on its structural
characteristics or the nature of the perturbation. This analysis also
points to the respective power of the two metrics: Strain is mapped
onto individual atoms and can be used for interpreting the struc-
tures at the atomic level, whereas the crystallinity score provides a
scalar value based solely on the statistical analysis of the distribu-
tions of interatomic distances. The latter is useful for large-scale
analysis of many structures to understand the crystalline properties
of an ensemble of structures (Fig. 4), whereas strain provides infor-
mation about lattice deformations at the atomic level (Fig. 3).

We analyze 15 distinct time trajectories to demonstrate the pow-
er of our methodology, but our computational approach can readily
accommodate data processing at a much larger scale. It is now fea-
sible, from a data analysis point of view, to analyze hundreds, if not
thousands, of individual nanocrystal time trajectories. Furthermore,
it is conceivable that atomic structure analysis algorithms for com-
pletely automated categorization of the nature of the structural dy-
namics could be developed in the future. Presently, the major
limitation is the tedious experimental data collection. If this bottle-
neck could be overcome, then experiments could be designed that
may shed light on the stochastic nature of small nanocrystals in so-
lution and further advance our understanding of the basic physics
governing colloidal nanoparticle assemblies.

MATERIALS AND METHODS

Synthesis of Pt nanocrystals

Pt nanocrystals of 2 to 3 nm in diameter were synthesized by mixing
0.05 mmol (NH4),Pt(II)Cly (99.995%, Sigma-Aldrich), 0.75 mmol
of tetramethylammonium bromide (98%, Sigma-Aldrich), 1 mmol
of polyvinylpyrrolidone (molecular weight of 29,000; Sigma-
Aldrich), and 10 ml of ethylene glycol in a three-neck round bottom
flask. We heated the mixture to 160°C and kept it at 160°C for 20 min.
After cooling the solution to room temperature, we added 90 ml of
acetone to precipitate the particles. The product was centrifuged at
4000 rpm for 5 min. We discarded the supernatant and redispersed
the Pt nanocrystals redispersed in 5 mM Hepes buffer solution
with pH 7.4.

Preparation of graphene liquid cells
We synthesized graphene on 25-pm-thick copper foil (99.8%, Alfa
Aesar) by the chemical vapor deposition method. The copper foil in
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a quartz tube was heated to 1000°C for 30 min in hydrogen environ-
ment. Graphene was grown onto the copper foil with methane flows
of 25 cm®/min and hydrogen flows of 10 cm®/min of at 1000°C. After
20 min, the product was rapidly cooled to room temperature with
methane flow. Graphene TEM grids were prepared by transferring
the graphene to a holey carbon grid using the direct transfer meth-
od. The graphene-covered copper foil was treated with weak oxygen
plasma to etch the graphene on one side of the foil. A Quantifoil grid
(Ted Pella) was placed onto the other grid side, on which graphene
was not etched. Next, the copper foil substrate was etched with am-
monium persulfate aqueous solution (0.1 g/ml). The graphene grid
was washed with deionized water several times. The graphene liquid
cell was fabricated with two graphene grids. A 0.5 pl of Pt nanocrys-
tal solution was loaded onto a graphene grid. The other graphene
grid was gently laid on the graphene grid with the liquid sample, so
that the liquid sample was sandwiched between the two graphene
sheets. The sealing of the liquid sample is accomplished through the
strong interaction between the two graphene surfaces.

Acquisition of TEM images

TEM movies of Pt nanocrystals in the graphene liquid cell were ob-
tained at a rate of 400 frames/s using TEAM I, an FEI Titan 80/300
TEM equipped with a postspecimen geometric- and chromatic-
aberration corrector and a Gatan K2 IS direct electron detector.
Thousands of images with 1920 x 1728 pixels and 0.358-A pixel
resolution were acquired at a dose rate of ~17 e—/pixel-frame or be-
low at an acceleration voltage of 300 kV. The pixel size was con-
firmed on the basis of the known lattice spacing of the graphene
sheets containing the nanocrystals. TEM images of rotating nano-
crystals were used in the 3D reconstruction process. Successful 3D
reconstruction of nanoparticles that differ in size, composition, and
solvating molecules requires extensive optimization of imaging con-
ditions, image processing, and reconstruction parameters. TEM im-
aging conditions must be optimized to obtain good signal-to-noise
ratio of the 2D projected lattice for a given rotational rate, local
thickness of the liquid, and image capture rate.

Denoising of the nanocrystal time trajectories

through kernel-PCA

We previously used a deep autoencoding neural network architec-
ture for denoising of one nanocrystal time trajectory before 3D re-
construction (2). The network was trained on the entire field of view,
most of which consists of the graphene layers and liquid background.
Neural network-based denoising of such a high-dimensional dataset
is extremely challenging and requires careful selection of the appro-
priate network architecture in conjunction with an appropriate train-
ing algorithm run on a powerful distributed computer architecture.
Here, we introduce much simpler and more cost-effective approach
that outperforms the deep learning approach in terms of the quality
of the atomic-resolution maps produced and the temporal resolution
obtainable. Instead of operating on the entire field of view, we use our
previously developed particle tracker (7) in conjunction with total
variation-based denoising (28) to robustly extract nanocrystal time
trajectories, consisting of windowed 2D views of one particle in dif-
ferent 3D orientations. Next, these one-particle time trajectories are
denoised by nonlinear dimensionality reduction through generative
kernel-principal components analysis (PCA) (29). Given a stack of
noisy nanoparticle images P;, 1 <i < N, we use kernel-PCA to pro-
duce a stack of denoised nanoparticles images P;,1 <i < N,. The
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kernel-PCA algorithm is implemented based on a pre-imaging
learning algorithm (30, 3I) but uses the cosine similarity to derive
the kernel and the corresponding optimization algorithm. The cosine
similarity between two nanoparticle images P, P; is defined as

K (P,-, P]-) = i. The kernel-PCA method involves:
[P {1 11P; I

1) Computing the kernel K between all pairs of noisy nanopar-
ticle images P;, P;.

2) Projecting each noisy nanoparticles image onto the kernel
space to get the feature vectors.

3) Reducing the dimension of the kernel space using the stan-
dard singular value decomposition and a user-specified number of
eigenvalues/eigenvectors to obtain feature vectors.

4) Back projecting the feature vectors with reduced dimensionality
onto the image space to obtain the denoised nanoparticle images P;.

The kernel-PCA approach has only one free parameter: The num-
ber of eigenvectors used for dimensionality reduction. Moreover, a
robust numerical solution to the model training problem is available
through the singular value decomposition and the pre-imaging algo-
rithm (30, 31). We used 500 kernel-PCA eigenvectors for all datasets
analyzed here. We empirically determined this number to give opti-
mal noise reduction while preserving high-resolution information.
Training was done in parallel for up to 10 particle trajectories simul-
taneously on a standard workstation in less than an hour.

Periodic coupling of the unsupervised atomic model
building to the iterative 3D orientation refinement

Instead of running hundreds of iterations of “classic” single-particle
refinement (11, 13, 14), as we did in our previous studies (5-7), we
now limit the number of iterations of 3D refinement to 10 before
individual atomic densities are detected in the 3D reconstruction;
spatial atomic coordinates derived; and a “clean” atomic density
map, free from biasing background effects, is simulated and used to
initialize another round of 3D refinement. These two phases of (i)
classic single-particle 3D refinement and (ii) automated atomic
model building and simulation of a “clean” 3D density for reinitial-
ization are iterated until convergence, which is typically obtained in
three to four rounds.

Atomic density threshold detection across nanocrystals of
different sizes and with different degree of crystallinity

We previously published the method for unsupervised atomic model
building (17), but a critical change that we had to make to enable reli-
able model building across nanocrystals of different sizes and with
different degree of crystallinity was in how the threshold for atom
detection is calculated. CNs are often used for atom peak threshold-
ing (5, 32). However, CN-based thresholding cannot be used in unsu-
pervised approaches on its own because any procedure that would
iteratively remove lowly coordinated atoms would eventually erode
all the atomic positions. Therefore, we select Tcy, which is the CN
bound that includes 95% of the detected atomic positions, as an initial
CN threshold. Next, we subjected the 15% of atoms furthest from the
center of mass of the nanocrystal to the following procedure. First, all
atoms with CN < Ty — 1 are removed. Next, we iteratively remove
all atoms with CN < Tcy and Rexp < Rineoretical/2, Where Reyp is the
experimentally measured atomic radius and Reeoretical iS the theoreti-
cally derived atomic radius. This leads to a convergent thresholding
procedure that is applicable across nanocrystals of different sizes and
with different degree of crystallinity.

Meana-Pafieda et al., Sci. Adv. 11, eady1413 (2025) 6 August 2025

Adaptive nonuniform density map regularization

based on ICMs

We introduce a method for nonuniform (local) regularization.
Punjani et al. (33) put forward a general framework for optimization
of the hyperparameters controlling the degree of smoothing intro-
duced by regularization or filtering techniques. This nonuniform
regularization approach, when coupled to the twofold cross-validated
3D refinement in CryoSPARC (12), provided adaptive regularization,
thus addressing the issue that single-particle 3D refinement methods
tend to simultaneously overfit and underfit datasets with large varia-
tions in local resolution due to flexibility or presence of disordered
regions. This approach can be summarized as follows

1) Create low-pass-filtered representations of the even map us-
ing some uniform impulse-response function (cosine, Butter-
worth etc.).

2) Identify which filtered even map minimizes the Euclidean dis-
tance between each voxel and the corresponding voxel in the odd
(raw) map.

3) Generate a nonuniformly filtered map by selecting the combi-
nation of optimally filtered voxels.

This approach recognizes that nonuniform regularization is in-
herently a real-space optimization problem, and it has proven to be
superior to uniform regularization approaches in single-particle 3D
refinement. Other nonuniform regularization approaches have also
been developed for biomolecules that use deep neural networks in
conjunction with prior structural information (34). Here, we intro-
duce an alternative method for nonuniform volume regularization
based on iterated conditional modes (ICMs) (35, 36) for optimiza-
tion of map connectivity in real space. A Gibbs random field de-
scribes the statistical properties of an interconnected network of
non-negative items (set of voxels). We restrict the regularization to
spatial neighborhood dependencies, i.e., voxel connectivity (the way
in which pixels in 3D images relate to their neighbors). ICM is a
deterministic algorithm for obtaining a configuration of a local max-
imum of the joint probability of a Gibbs random field by iteratively
maximizing the probability of each variable (voxel) conditioned on
the others in the neighborhood. We obtain a noise volume through
subtraction of the even map from the odd map, followed by estima-
tion of per-voxel noise SDs o; through voxel neighborhood analysis.
We then apply ICM for nonuniform volume regularization of the
even and odd maps independently in Algorithm 1 where A = 0.1isa
regularization parameter. The discretization of the voxel values of
the even and odd maps required for optimizing the local neighbor-
hood quadratic potential is done through vector quantization.

Strain analysis

We define strain as the relative deformation of the structure compared
to an ideal FCC lattice structure. The strain is calculated through dif-
ferentiation of the displacement field (37). The displacement field is

ALGORITHM 1I: Iterated Conditional Modes

Loop over iterations
Loop over voxels x;
Identify n neighboring voxels y;
Py
Maximize p(2;) = —("‘Z;‘il) + AT, 2+ na? + 22 X0, ;)
Assign the gray level X; € [0,255] of the voxel accordingly
Update the volume x; = X;

Algorithm 1. Iterated Conditional Modes.
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defined as the ideal atomic positions subtracted from the experimen-
tally measured ones and interpolated using kernel density estimation
(38). The relative atom positions a;, b;, and ¢; are determined through
lattice fitting. Let rpcc; represent the ideal FCC atomic position of
atom i; 7, ; its experimentally measured position, and e; the residual

exp,i

of the fitting, then

Texpi = Nyl + n},b,- +n,c;+e

(0)

— 0)
Trcc,i = My,

(0
+n,b;" +n.c;

where n,,n, n, € Z are normal vectors, a?o), bl(,o), CEO) € R are the
unit cell vectors of bulk Pt, and the experimental unit cell vectors
a;, b, ¢; € Rare determined through minimization of the sum of the
square residuals. The displacement field u; of atom i is evaluated as

Ui = Texp,i — TFCCli

A Gaussian kernel is applied to generate a continuous function
u(r) of any vector position r

lr—=epl®
2t eXP( T T
|’_Texp,i|2
Ziexp< T T e

where 6 =2 A is the SD of the Gaussian distribution, chosen based on
leave-one-out cross-validation. The three displacement field compo-

u(r) =

nents u,, u,, u, are used to calculate the six 3D strain components
0 u, 0 uy 0 u,
€y = s €=, €,=
S - | A P

€xy=— _x+_)’ S €yz=_ _}’+_Z ,
2\ dy Ox 2\ 0z Oy
1/ 0u, N ou,
€,==

¥ o2\ 0z ox
€, €y, and €, represent compression or expansion of the lattice
in the x, y, and z dimensions, respectively. €, , €, and €, represent
deformations with angular components. We calculated the radial

strain using a similar approach, with the radial displacement field,
ugr), and radial strain component, €,,, described as

i

(r) _
Ml. _l rexp,i -1 | - |rFCC,i - T |
ou,
= or

Identification of a time-invariant core

We identified the atoms between the first temporal state and the sec-
ond temporal state in the trajectory that had displacements smaller
than half of the theoretical diameter of a platinum atom. Next, we
averaged these “common” atomic positions and used them to iden-
tify common atoms in the third temporal states and so on. Once we
had identified this time-invariant core, we went back through the
temporal states in the trajectory and identified, for each state, the
common atoms. This subset of common atoms of identical size across
all temporal states is defined as the time-invariant core of atoms.
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Crystallinity score

We calculated all pairwise atomic distances for the atomic structure of
the particle of interest and compared that with distribution of pairwise
atomic distances obtained from a simulated nanoparticle with ideal
FCC lattice structure, spherically truncated to the same diameter. Next,
the two distributions of atomic distances were compared using the
Kolmogorov-Smirnov test (39) to calculate the probability that the null
hypothesis was true, i.e., that the samples are drawn from the same ref-
erence distribution. We used this probability as a crystallinity score.

Parallel code implementation
The workflow implemented in the latest version of the software suite
SINGLE (7) can be summarized as follows:

1) Particle tracking and time-trajectory extraction.

2) Time-trajectory denoising with kernel-PCA.

3) Time-restrained 2D analysis for image quality assessment.

4) Time-averaged 3D reconstruction and identification of trial
time window boundaries.

5) Regularized 3D reconstruction in time windows.

We invested large efforts into serial central processing unit (CPU)
code optimization and design of efficient parallel implementations
for the various steps of the workflow. Steps 1 to 3 can be distributed
across network connected computing units (sets of CPU cores) that
work independently of each other on one time-trajectory each. This
kind of parallelization scales linearly with the number of computing
units. On a standard CPU workstation, steps 1 to 3 can be accom-
plished within a few hours. Steps 3 and 4 typically take 20 min to an
hour on a standard CPU workstation, depending on the image size
and the total number of images in the time trajectory. Steps 3 and 4
require some manual intervention for image quality assessment and
trial time boundary selection, which typically involves less than half
an hour of manual labor. Steps 4 and 5 have been optimized for
shared-memory CPU architectures and are completed within a few
hours using a handful of CPU cores (we typically use 12). We provide
an implementation that generates individual scripts for each of the
time trajectories that can be executed in a distributed computing en-
vironment using standard queue system software. While working on
the 15 time trajectories used to generate the 66 atomic structures,
there were many occasions where we needed to fix bugs or improve
certain aspects of the 3D reconstruction code and rerun all the 3D
reconstruction jobs. This was done at least 10 times in a timeframe
of a few weeks without using any form of sophisticated distributed
computing system. Hence, if equipped with a modern multicore
CPU workstation, then it would be feasible to process hundreds of
trajectories within a reasonable time frame. If running our codes on
a distributed computing system, then this number could readily be
scaled up by an order of magnitude. However, if such a large struc-
ture determination effort would be of interest to the community, it
would be wise to invest some additional efforts into increased auto-
mation because steps 3 and 4 involve some manual intervention.
Furthermore, the analysis of the reconstructed 3D density maps and
their associated atomic coordinates would be cumbersome for so
many structures, and increased automation would be necessary for
efficient interpretation of maps and atomic coordinates.

Analyses of atomic structures

Visualization of 3D density maps and atomic coordinates were done
in USCF Chimera (40). All quantitative structure analyses were done
in the latest version of SINGLE (7).
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Supplementary Materials
This PDF file includes:

Tables S1 and S2

Figs.S1to S3
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