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M AT E R I A L S  S C I E N C E

Time-resolved atomic-resolution Brownian tomography 
of single nanocrystals reveals size-dependent dynamics
Rubén Meana-Pañeda1, Canran Ji1,2, Cong T. S. Van1, Cyril F. Reboul1, Sungsu Kang3, Sungin Kim4, 
Jinho Rhee5,6, Yunseo Lee5,6, Peter Ercius7, Wojciech Czaja2, Jungwon Park5,6,8,9*, Hans Elmlund1*

Atomic-resolution structure identification of nanocrystals by graphene liquid cell electron microscopy (GLC-EM) 
has revealed that small, solubilized platinum nanocrystals consist of an ordered crystalline core surrounded by 
mobile surface atoms, which dissociate during oxidative etching, resulting in distinct temporal structural states. 
Requirements imposed by the 3D reconstruction algorithm limit the number of structural states that can be re-
solved. We introduce a regularized 3D reconstruction algorithm that exploits the redundancy inherent in the ex-
perimental data, allowing us to improve the time resolution. Our developments provide a comprehensive 
molecular picture at unprecedented spatial and temporal resolution of the nonlinear, linear, and fluctuating dy-
namic phenomena that single nanocrystals undergo during the GLC-EM experiment. We determined atomic struc-
tures of 66 temporal structural states, extracted from 15 time trajectories of individual nanocrystals. Large (478 to 
698 atoms) and small (<300 atoms) nanocrystals show etching that preserves a stable core, whereas mid-sized 
(351 to 571 atoms) nanocrystals present dynamics that change the coordination of the core.

INTRODUCTION
The field of nanoscience largely lacks methods to probe nonequilib-
rium species in nanomaterials, with a few notable exceptions (1, 2), 
and robust methods for three-dimensional (3D) structure determi-
nation of nanocrystals in solution have proven extremely difficult to 
develop. Presynthesized nanocrystals are susceptible to subsequent 
rearrangements in solution through surface atom desorption and 
adsorption, coalescence, and dissolution following Ostwald ripen-
ing (3, 4). 3D structure determination of single nanocrystals in solu-
tion by graphene liquid cell electron microscopy (GLC-EM) and 
single-particle analysis (2, 5–7) may provide answers to long-sought 
physical models for nanocrystal formation, growth, and dissolution. 
However, several fundamental limitations need to be overcome be-
fore the method can become a robust route to probing nonequilib-
rium nanocrystal species. This study represents a major step in this 
direction.

In biological single-particle cryo–electron microscopy (8), exper-
imental measurements are abundant, and the main challenges are the 
extreme levels of noise (9) and the molecular heterogeneity of the 
single-particle ensemble (10). In contrast, transmission electron mi-
croscopy (TEM) images of metallic nanoparticles have higher signal-
to-noise ratio (SNR) because the difference in phase contrast between 
the light atom background (graphene and water) and the heavy me-
tallic atoms is relatively large. However, we are imaging nanocrystals 

undergoing time-dependent structural changes of unknown nature 
at unknown timescales. Direct electron detectors available for in-
solution experiments can be used to acquire a few tens of thousands 
of single-nanoparticle 2D views in different 3D orientations, ob-
tained over a few tens of seconds at high electron dose. Unless the 
rotational freedom of the nanocrystal is completely unrestricted, 
which is rarely the case, we are faced with the problem of trying to 
obtain atomic-resolution 3D movies of dynamic structural phenom-
ena from a set of differently projected 2D views of a nanocrystal with 
limited rotational sampling. This problem requires sophisticated 
methods for signal enhancement that go beyond straightforward 
averaging.

Biological single-particle EM favors computational approaches 
that can estimate accurate relative 3D particle orientations, on average, 
in a computationally efficient manner (11–14), whereas 3D recon-
struction of metallic nanoparticles from GLC-EM images requires 
very accurate and precise determination of each of the relative 3D ori-
entations because of the scarcity of recorded particle views. In biologi-
cal single-particle EM, prohibitively large 3D reconstruction errors 
can be overcome by collecting more data, whereas this approach is 
infeasible for nanocrystals in solution. The evaporation under electron 
irradiation in ultrahigh vacuum causes rapid shrinkage of the cell to a 
degree that does not allow free nanocrystal rotation. Data are collected 
in Scherzer focus of an aberration corrected instrument (15). Hence, 
for all practical purposes, there is no contrast transfer function (CTF) 
(16) to account for. The model that we seek to estimate is typically well 
represented by a periodic arrangement of atoms, and sophisticated 
regularization approaches involving the CTF are not needed. There-
fore, more directly applicable approaches for regularization compared 
to those used in biological single-particle EM can be pursued.

This study introduces three principal innovations to nanoparti-
cle 3D reconstruction with GLC-EM to enable time-resolved quan-
titative 3D structure analysis at the highest possible temporal and 
spatial resolution. First, the atomic model building is coupled in an 
iterative manner to the method that we previously developed for 
estimating the relative 3D orientations (5–7). Second, denoising of 
the nanoparticle time trajectory through nonlinear dimensionality 
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reduction before 2D and 3D registration overcomes the need for 
anisotropic motion correction and averaging of contiguous movie 
frames in small time windows, as previously described (7). Third, to 
account for further variability within the discrete temporal state 
groups, for example, due to regional surface disorder, or partial oc-
cupancy of associating atoms, we introduce a method for adaptive 
nonuniform regularization based a spatially varying real-space pri-
or that optimizes the atomicity of the reconstructed 3D density 
maps. With these methodological advancements, we could reliably 
reconstruct 66 atomic-resolution 3D density maps from 15 previ-
ously acquired nanocrystal time trajectories (2, 5–7). In addition to 
allowing estimation of the rate of structural change, our analysis en-
abled estimation of time-dependent atomic lattice and shape prop-
erties. Below, we provide time-dependent statistics of various 
atomic lattice descriptors, such as coordination number (CN), ra-
dial strain, and crystallinity score. The ability to measure dynamic 
atomic parameters in space and time represents the next frontier of 
structural studies in solution.

RESULTS
Our previous developments for 3D reconstruction of nanocrystal 
time trajectories (2, 5–7) suffered from issues with convergence sta-
bility and had to be repeated multiple times to ensure convergence to 

a global optimum. If the foreground atomic contrast managed to 
drive the 3D reconstruction process to early convergence, then inter-
pretable atomic-resolution 3D reconstructions could be obtained. 
However, if background signal from the solvent and the graphene 
started biasing the 3D reconstruction, convergence stalled, and the 
maps became streaky and problematic with poorly defined atomicity. 
To overcome this problem, we here introduce a method that couples 
the iterative 3D refinement with unsupervised atomic model build-
ing and applies a spatially varying real-space prior that optimizes the 
atomicity of the reconstructed density maps (Materials and meth-
ods). Figure 1 provides a schematic overview of our method.

We reanalyzed seven time trajectories that we previously analyzed 
with earlier generations of our 3D reconstruction methodology, four 
from (5) (NP3, NP1, NP4, and NP5 in fig. S1A) and three from (17) 
(NP1, NP2, and NP7 in fig. S1B). In addition to the added value that 
the time-dependent structural information gives with our methodol-
ogy, we also obtained substantially improved 3D reconstruction 
quality in five of the seven tests and maps of comparable quality in the 
remaining two tests, as measured by the average correlation between 
the experimentally reconstructed atomic densities and simulated 
atomic densities (7, 17). NP3 from (5) showed an average improve-
ment of 19.2% in atom correlation, and the closest matching tempo-
ral state differed in composition by 2.3% of the total mass. NP1 from 
(5) showed similar atom correlation of ~0.8 in the time-segmented 

Fig. 1. Schematic summary of our method for regularized nanoparticle 3D reconstruction. Individual nanoparticle projections, denoised with kernel–principal com-
ponents analysis (kPCA), are matched with reprojections of the 3D density map. Reprojections of the simulated density map are used for seeding the projection matching 
and reprojections of the reconstructed density are used in the iterations that follow. After one cycle of iterative 3D orientation refinement with projection matching is 
completed, atom segments and their center coordinates are identified in an unsupervised fashion using automated map and atom peak thresholding. A simulated den-
sity is produced from the atomic coordinates and used to reseed the next cycle of the process. The real density was rendered at slightly higher sigma value in the picture 
that demonstrates the unsupervised atom detection to include some nonatom noisy background signal and illustrate the power of the automated map/atom threshold-
ing. ICM, iterated conditional mode; FT, Fourier transform.
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maps versus the time-integrated map and a 3.9% difference in com-
position of the closest matching state. NP4 from (5) showed similar 
atom correlation of ~0.75 in the time-segmented maps versus the 
time-integrated map and but the difference a higher compositional 
difference (17.1%) of the closest matching temporal state. NP5 from 
(5) showed an average improvement of 10% in atom correlation and 
a compositional difference of 11.6% in the closest matching temporal 
state. NP1 from (17) showed an average improvement of 14.4% in 
atom correlation and a substantial difference in composition (19.2%) 
in the closest matching temporal state. NP2 from (17) showed an av-
erage improvement of 2.8% in atom correlation and difference in 
composition of 19.4% in the closest matching temporal state. NP7 
from (17) showed an average improvement of 16.9% in atom correla-
tion and difference in composition of 13.9% in the closest matching 
temporal state. Overall, the regularized 3D reconstruction approach 
identifies fewer atoms with improved atomicity overall. The most 
dramatic improvements are seen in NP3 and NP4 from (5) and in 
NP1 and NP7 from (17) In these instances, the surface structure is 
much better defined in the maps obtained with regularized time-
resolved 3D reconstruction. The facets of the nanocrystal are re-
solved, which is a strong indication that alignment errors have been 
reduced, and compositional surface variations resolved.

Time-resolved atomic-resolution 3D reconstruction of 15 
nanocrystal time trajectories
Trial time segment boundaries were identified on the basis of repro-
jection correlation plots (fig. S2), which plot the correlation between 
reprojections of the time-averaged 3D reconstruction and the indi-
vidual nanocrystal views in the time trajectory as a function of time. 
Any major 3D structural differences between the time-averaged 3D 
reconstruction and the individual nanocrystal views will be reflect-
ed in the magnitude of the correlation. This resulted in an initial 
division of each trajectory into one to four contiguous time seg-
ments. Independent 3D reconstructions were obtained from these 
segments before conducting further splitting. Further splitting of 
the time trajectory was a process of trial and error, splitting further 
and further until reliable 3D reconstructions and associated atomic 
models could not be produced. Three to eight time-windowed 
atomic-resolution 3D reconstructions, ranging in time window size 
from 2.5 to 19.8 s, with an average segment size of 7.2 ± 4.0 s, were 
obtained per nanocrystal time trajectory. We selected the size of the 
time windows to allow successful atomic-resolution 3D reconstruc-
tion with sufficient rotational coverage, which does not necessarily 
reflect the physical lifetime of the reconstructed temporal states. 
However, we find it unlikely that there would be major structural 
transitions occurring within the individual segments analyzed be-
cause of the exceptionally high quality of the maps produced. In 
those instances where reliable atomic-resolution 3D reconstructions 
and associated atomic coordinates could be determined of highly 
similar structural states that were neighbors in time, we could ascer-
tain the degree of structural stability with high confidence and com-
pare atom association/dissociation rates between different time 
segments. It is also important to characterize strain, the relative de-
formation of the nanocrystal when compared to an ideal face-
centered cubic (FCC) lattice. Strain is an important descriptor that 
accounts for the reactivity of Pt nanocrystals in important catalytic 
reactions, including the methanol oxidation reaction and the oxy-
gen reduction reaction (18, 19) as strain modifies the local binding 
energy of adsorbates by changing the bandwidth of the d orbitals 

(20). We obtained 3D strain maps for each temporal structural state, 
as described in Materials and Methods.

Findings for all trajectories are summarized in table S1. Defini-
tions for the different categorizations used are summarized in ta-
ble S2. We began analyzing the results for the smallest nanocrystal 
[trajectory ESC5 (etching with stable core 5); Fig. 2A]. This nanocrys-
tal has 182 atoms in the initial temporal state and 163 atoms in the 
final state. It loses 10% of its total mass through etching while main-
taining a stably coordinated core of atoms. The fraction of atoms with 
CN > 8 decreases linearly throughout the trajectory from 59 to 53%. 
We previously reported that crystal abnormalities resulting from sur-
face interactions with ligands, the solvent, and the electron beam have 
a “penetration depth” δ beyond which the nanocrystal approximates 
an ideal FCC lattice (17). It is at this depth that a transition occurs 
within the nanocrystal itself from a lowly coordinated irregular sur-
face to a highly coordinated core. An increase in penetration depth 
with time would indicate an increase in surface disorder and irregu-
larity, whereas a decrease in penetration depth means that a larger 
fraction of the total number of atoms of the nanocrystal is part of the 
highly coordinated core. The penetration depth only shows minor 
variations over the ESC5 trajectory, with an overall increase of 0.32 Å 
(~8% of the lattice parameter of bulk Platinum). ESC5 has one of the 
most stable structures observed in this study.

Next, we turned to trajectory FCHCS1 (fluctuating atom compo-
sition, high core stability 1;  Fig.  2B), showing a nanocrystal with 
fluctuating atomic composition and high core stability. The first 
three time-segments, spanning the first 10 s, show nearly identical 
structures, indicating a high degree of stability. The change in pen-
etration depth and degree of coordination in the first 10 s are minor, 
whereas the average radial strain peaks at 23 s, right before the loss 
of 13% of the total mass of the particle in the last transition, and re-
version back into a final temporal state with nearly identical compo-
sition compared to the initial three states. The end state has the 
largest penetration depth and the least coordinated core of the four 
FCHCS1 time segment structures.

Trajectory ESIP1 (etching with stable initial phase 1; Fig. 2C) dis-
plays an equally high degree of stability, with three identical time 
segment 3D reconstructions spanning the first 15 s, followed by a 
rapid dissolution event (−8.3 atoms/s). The penetration depth re-
mains unchanged with time, and the particle only loses 13% of its 
total mass during imaging. This high degree of structural stability is 
the hallmark of small (163 to 285 atoms) nanocrystals.

Next, we turned to trajectory EFC4 (etching with fluctuating 
core 4; Fig. 2D), which represents a nanocrystal of 316 atoms that 
undergoes etching with fluctuating core to lose 30% of its total mass. 
This is the first example of a nanocrystal with a core fluctuating be-
tween 60 and 64% of atoms with CN > 8 across the trajectory. The 
penetration depth is also fluctuating with time, indicating that when 
nanocrystals have reached this size, there is a correlation between 
dynamic effects at the surface and the stability of the core.

Trajectory EFC2 (Fig. 2E) also undergoes etching with a fluctuat-
ing core, but this nanocrystal of 337 atoms displays a much more 
dramatic dissolution trajectory with a highly nonlinear overall etch-
ing process proceeding over three structurally stable phases. The 
penetration depth peaks at 20 s, which is the point at which the core 
is the least coordinated. Hence, the reconstruction at 20 s likely rep-
resents a transient intermediate in the dissolution trajectory. The 
average radial strain accumulates throughout the trajectory and 
reaches its peak after 36 s. The structure with the highest stability 
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Fig. 2. Evolution of the nanocrystal structures as a function of time. The individual atoms are color-coded according to CN. The four plots below the trajectory of 3D 
atomic coordinates show as a function time: the penetration depth, the average radial strain, the fraction of atoms with CN > 8, and the average and SD of the correlation 
between the individual atomic densities and the density of a simulated atom, as described in the main text. (A) ESC5 trajectory, an example of etching with stable core. 
(B) FCHCS1 trajectory, an example of fluctuating composition with high core stability. (C) ESIP1 trajectory, an example of etching with stable initial phase. (D) EFC4 trajec-
tory, an example of etching with fluctuating core. (E) EFC2 trajectory, an example of etching with fluctuating core. (F) FC1 trajectory, an example of fluctuating atom 
composition. (G) ESC3 trajectory, an example of etching with stable core. (H) EFC1 trajectory, an example of etching with fluctuating core. (I) ESC1 trajectory, an example 
of etching with stable core.
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appears in the end of the EFC2 trajectory, with three remarkably 
similar temporal states of 209, 196, and 203 atoms, respectively, ex-
tracted from the last ~20 s of the ~40-s-long trajectory. The last of 
the three temporal states in the first structurally stable phase of the 
EFC2 trajectory shows a peak in core coordination at 15 s. The first 
temporal state in the third and last structurally stable phase of the 
EFC2 trajectory, right after the second major transition, show a sec-
ond peak in core coordination at ~30 s.

The FC1 trajectory (fluctuating core 1;  Fig.  2F) undergoes dy-
namics leading to a small amount of growth (3% of the total mass). 
In the first 15 s of the FC1 trajectory, the nanocrystal undergoes 
highly linear etching, losing 10% of its total mass. During this phase, 
the fraction of atoms with CN > 8 is reduced from 67 to 61%. The 
nanocrystal then undergoes rapid growth with a growth rate of 
13.2 atoms/s between the fifth and the sixth time segment. The final 
etching phase takes the nanocrystal from 398 to 362 atoms with a 
concomitant increase in strain and penetration depth.

Next, we analyzed the ESC3 trajectory (Fig.  2G). This larger 
nanocrystal of 478 atoms loses 43% of its mass through etching 
while preserving a stable core. The ESC3 dissolution dynamics is 
highly linear, and there is a large increase in penetration depth to-
ward the end of the trajectory (after 20 s) concomitant with a drop 
in the fraction of highly coordinated atoms. The average radial 
strain increases linearly with time, inversely proportional to the de-
gree of core coordination. However, linear dynamics are not the 
norm for larger nanocrystals, as demonstrated by trajectory EFC1 
(Fig. 2H) showing a nanocrystal of 533 atoms undergoing etching 
with a fluctuating core to arrive at a state of 388 atoms, having lost 
27% of its total mass. The % CN > 8 plot shows a sawtooth wave for 
this nanocrystal, which fluctuates markedly, going from 59 to 29% 
CN > 8 atoms in the first transition and from 69 to 31% CN > 8 at-
oms in the last transition. The 69% CN > 8 atoms is in the top three 
highest reported values in this study, but this highly crystalline state 
lasts for only 10 s before etching reduces its mass by 31% in a transi-
tion with the highest rate of change—20 atoms/s—measured in this 
study. The rate of change could be much faster because we presently 
do not have sufficient temporal resolution to assess exactly where 
the transition occurs, but it is not slower than reported.

Last, we report our findings on the largest nanocrystal analyzed 
(Fig. 2I). The ESC1 trajectory undergoes etching with a stable core 
with an initial state of 698 atoms and a final state of 569 atoms, thus 
losing 18% of its total mass. The dissolution dynamics are highly 
linear for this nanocrystal. All the extracted statistics show strongly 
linear dependency on time. The penetration depth increases linearly 
as the surface structure becomes less coordinated and more irregu-
lar, the radial strain decreases close to linearly, and the fraction of 
highly coordinated atoms decreases linearly with time.

An additional six trajectories are presented in fig.  S3. All ana-
lyzed trajectories have high time-dependent atom correlations, indi-
cating high 3D reconstruction quality and absence of any 3D 
reconstruction outliers due to, for example, limited sampling of pro-
jection directions.

Our detailed analysis enabled categorization of the type of dy-
namics observed for nanocrystals of different sizes (Table  1). In 
summary, the first category of dynamics we observe is etching that 
preserves a stable core throughout the entirety of the time trajectory 
or a substantial part of it. This category contains the largest nano-
crystals (478 to 698 atoms) and the nanocrystals below 300 atoms in 
size. The second category of dynamics observed is etching that in-
volves structural intermediates with a destabilized core structure, 
either a single destabilized intermediate state (nanocrystals in the 
size range of 353 to 571 atoms) or nanocrystals showing fluctuating 
core coordination (size range of 351 to 533 atoms). It is remarkable 
that the nanocrystals with the most stable core and the least relative 
change in mass are the two smallest nanocrystals with initial states 
of 242 and 182 atoms, respectively. In contrast, nanocrystals in the 
size range of 300 to 600 atoms show the largest relative change in 
mass and the largest change in the fraction of highly coordinated 
atoms with time. Therefore, we conclude that there is a strong size 
dependency on the stability of the nanocrystals, where below a cer-
tain threshold in size, the stability increases. It is also evident that 
highly nonlinear dynamic phenomena, such as fluctuating core co-
ordination and fluctuating penetration depth predominantly, occur 
in mid-sized nanocrystals of 316 to 533 atoms. In contrast, larger 
nanocrystals of 520 to 698 atoms show linear dissolution dynamics 
and linear increase in penetration depth with time.

We next calculated the radial strain for each set of atomic coordi-
nates (Materials and methods). Furthermore, to assess whether 
there existed a subset of atoms that remain in similar positions 
throughout the trajectory, we developed a method to identify the 
“time-invariant core” of atoms (Materials and methods). Last, we 
developed a scalar metric to assess the degree of crystallinity of a 
nanoparticle that does not make any assumptions about the fit of an 
ideal FCC lattice to the experimentally measured lattice geometry. 
This “crystallinity score” represents the probability that a nanocrys-
tal atomic structure has an ideal FCC lattice geometry (Materials 
and methods). These results are presented for a subset of trajectories 
with noteworthy strain and core dynamics in Fig. 3. The ESC5 tra-
jectory showed a linear increase in average radial strain (Fig. 1A), 
indicating an expansion of the lattice. At the atomic level, we de-
tected a strain polarity at 13 s (Fig. 3A). The time evolution of the 
radial strain is not homogeneous across the atoms of the ESC5 tra-
jectory. On average, there is a positive increase in strain, but a hand-
ful of atoms at the surface and in the center show negative strain. 

Table 1. Type of dynamics observed for nanocrystals of different sizes. 

182–285 atoms 316–353 atoms 478–698 atoms

ESC EFC ESC

 Fluctuating atom composition, high core stability 
(FACHC)

Fluctuating atom composition (FAC) EFC

Etching with stable initial phase (ESIP) ECT ECT
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The analysis of the time-invariant core of ECS5 shows a linear de-
crease in crystallinity score over time and most of the fringe atoms 
are confined to the surface. The penetration depth plots at 8 s versus 
19 s indicate a slight drop in core coordination with time, but no 
notable change in penetration depth.

The EFC2 trajectory shows little change in average radial strain in 
the first 30 s, followed by a rapid increase (Fig. 1E). At the atomic 
level, all strain is either positive or close to zero (Fig. 3B). The pattern 
of change in strain magnitude with time indicates a bipartite division 
of atoms with either strain close to zero or atoms with positive strain, 

but the pattern varies in geometry across the trajectory. The analysis 
of the time-invariant core of EFC2 indicates a classic etching pattern 
with lowly coordinated surface atoms dissociating. Notably, the crys-
tallinity score of the time-invariant core peaks at 29 s, right after the 
major structural transition in the dissolution trajectory. The penetra-
tion depth plots confirm that there is a disorder to order transition 
somewhere between 21 and 29 s.

The EFC1 trajectory shows an initial drop in average radial strain 
followed by a rapid increase toward the end of the trajectory (Fig. 1H). 
At the atomic level, the strain pattern is complex, with high positive 

Fig. 3. Quantitative time-dependent structure analysis. The top panels show evolution of radial strain at the atomic level (blue to red atom coloring), the middle pan-
els visualize the “time-invariant core” atoms (blue) and changing fringe atoms (yellow), and the lower panels show penetration depth plots for selected time segments. 
The timestamp (in s) is indicated below the atomic structures showing the magnitude of the radial strain, and the crystallinity score is indicated below the time-invariant 
core pictures (blue atoms). (A) ESC5 trajectory, an example of etching with stable core. (B) EFC2 trajectory, an example of etching with fluctuating core. (C) EFC1 trajec-
tory, an example of etching with fluctuating core. (D) ESC3 trajectory, an example of etching with stable core. (E) ECT2 trajectory, an example of etching with core transi-
tion. (F) FCHCS1 trajectory, an example of fluctuating composition with high core stability.
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strain in the initial and final structures and a relaxed state at 20 s 
(Fig. 3C). This relaxed state shows the highest crystallinity score of 
the time-invariant core, and the penetration depth plots confirm the 
disorder to order transition.

The ESC3, ECT2 (etching with core transition 2), and FCHCS1 
trajectories (Fig. 3, D to F) show unremarkable time-dependent dy-
namic changes compared to the above-described trajectories. The 
ESC3 trajectory shows linear increase in the average radial strain 
and the highest crystallinity score for the time-invariant core in the 
first 10 s (Fig. 3D).

The ECT2 trajectory starts off in a highly relaxed state (first 20 s) 
and then undergoes a rapid increase in average radial strain (fig. S3D). 
The crystallinity score decreases linearly, and there is a slight drop in 
core coordination at 15 s, as confirmed by the penetration depth 
plots (Fig. 3E).

The FCHCS1 trajectory shows little change in the average radial 
strain in the first 10 s and then a strain polarity at 13 s with two 
clusters of atoms with highly positive strain confined to the surface 
appears before the positive strain transcends to the entire particle 
(Fig. 3F). The highest crystallinity score is observed in the first 10 s.

Last, we plotted the crystallinity score as a function of the num-
ber of atoms for all time segment structures (Fig. 4), which revealed 

three groups of nanocrystals with distinct characteristics. The 
grouping simultaneously considered the number of atoms, the na-
ture of the dynamic changes, and the crystallinity score. Small nano-
crystals (163 to 301 atoms) have crystallinity scores ranging from 
0.12 to 0.83. Medium-sized nanocrystals (310 to 469 atoms) have 
scores ranging from 0.51 to 0.98, and large nanocrystals (475 to 698) 
have scores ranging from 0.61 to 0.99. Two outliers were identified 
of temporal states with 388 and 469 atoms, respectively. Both outly-
ing states are part of the EFC1 trajectory at 29 and 11 s, respectively. 
We have no reason to believe that these states are artifacts due to 
limited projection direction sampling (fig.  S2) or poor 3D recon-
struction quality (Fig. 2H, see atom correlation plot).

DISCUSSION
We present 66 atomic structures of distinct temporal nanocrystal 
states, providing a plethora of information for theoreticians pursu-
ing simulations of these types of systems. The dynamic structural 
insights we have gained and the computational framework we intro-
duce for quantitative structural analysis of heterogeneous nanopar-
ticles in solution will be valuable in research fields concerned with 
optimal material design in the many different areas where platinum 
nanocrystals have applications (21–25).

A subset of nanocrystals remains stable in certain time segments 
and then undergoes rapid and profound structural rearrangements. 
Referring to these dissolution dynamics as etching is appropriate 
because atoms are removed from the surface when we look at the 
start and the end structures. However, given the highly nonlinear 
changes in the number of atoms, the mechanism is different from 
that expected from classic equilibrium physics. Whether the dy-
namic surface effects we observe have direct mechanistic relevance 
to heterogeneous catalysis or are a consequence of interactions with 
the electron beam cannot be determined. It is likely that radiation 
damage of the organic ligands that cover the nanocrystal surface oc-
curs already at a very low electron dose (5 to 10 e−/Å2), as for pro-
teins, and that we are in fact imaging nanocrystals with a damaged 
passivation layer. Improved data acquisition schemes, possibly un-
der cryogenic conditions, applied to the appropriate nanocrystal 
systems in conjunction with robust quantitative image processing 
are needed in the future to further characterize these dynamic phe-
nomena. However, it is evident that the methodology that we put 
forward for time-resolved Brownian tomography of single nano-
crystals and regularized 3D reconstruction can be applied to charac-
terize these kind of phase changes at the atomic level.

The trajectories that show the most complex nonlinear structural 
dynamics also show the most complex variations in penetration depth 
with time (Fig. 2, E and F), whereas trajectories that that display linear 
dissolution dynamics show linear change in penetration depth with 
time (Fig. 2I). The smallest structures (Fig. 2, A to C) show compara-
bly small variations in penetration depth (ESC5, Fig. 2A: change of 
+0.3 Å in δ across the trajectory; FCHCS1, Fig. 2B: change of −0.35 Å; 
and ESIP1, Fig. 2C: change of +0.14 Å), whereas the penetration 
depth in the larger structures vary more (ESC1,  Fig.  2I: change of 
+0.54 Å; ESC2, fig. S3E: change of +0.65 Å; and ESC3, Fig. 3G; change 
of +4.46 Å). As the number of atoms in a nanocrystal increases, the 
number of energetically accessible states also increases, as outlined by 
Bohr’s correspondence principle (26). In contrast, smaller nanocrys-
tals can behave similar to “super atoms” with highly quantized energy 
states (27). This may explain some of the trends we observe in terms 

Fig. 4. Crystallinity score as a function of the number of atoms. The top panel 
show example structures with high crystallinity scores extracted from the indicated 
trajectories (top), with the number of atoms indicated (bottom). Triangles, diamond, 
and square markers correspond to the three categories of nanocrystals described 
in Table 1. The two indicated outliers correspond to the two structural intermediates 
in the EFC1 trajectory, with timestamps and number of atoms indicated.
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of the nature of the dynamic phenomena, but it is not clear from our 
results where the classical limit resides. What is clear, however, is that 
the smallest nanocrystals analyzed show the greatest degree of stabil-
ity, whereas nanocrystals in the ~300 to 500 atoms size range are the 
most susceptible to nonlinear dynamic phenomena due to a strong 
correlation between dynamical surface effects and core coordination.

The average radial strain measures the relative deviation from 
perfect FCC crystallinity, and it is related to the crystallinity score. 
In those instances where the inverse proportionality between the 
two metrics is obvious (ESC5, R  =  −0.85, ESC3, R  =  −0.98, and 
ECT2, R = −0.96), the strain changes in a more concerted manner 
across the atoms of the nanocrystal (Fig. 3, A, D, and E), whereas in 
those instances that do not show any significant correlation, the 
strain changes in a less concerted manner at the atomic level (Fig. 3, 
B, C, and F). Mechanistically, a possible explanation for this phe-
nomenon is that energy perturbations, either because of electron 
beam interactions or chemical changes, have long-ranging effects 
that influence the nanocrystal distinctly depending on its structural 
characteristics or the nature of the perturbation. This analysis also 
points to the respective power of the two metrics: Strain is mapped 
onto individual atoms and can be used for interpreting the struc-
tures at the atomic level, whereas the crystallinity score provides a 
scalar value based solely on the statistical analysis of the distribu-
tions of interatomic distances. The latter is useful for large-scale 
analysis of many structures to understand the crystalline properties 
of an ensemble of structures (Fig. 4), whereas strain provides infor-
mation about lattice deformations at the atomic level (Fig. 3).

We analyze 15 distinct time trajectories to demonstrate the pow-
er of our methodology, but our computational approach can readily 
accommodate data processing at a much larger scale. It is now fea-
sible, from a data analysis point of view, to analyze hundreds, if not 
thousands, of individual nanocrystal time trajectories. Furthermore, 
it is conceivable that atomic structure analysis algorithms for com-
pletely automated categorization of the nature of the structural dy-
namics could be developed in the future. Presently, the major 
limitation is the tedious experimental data collection. If this bottle-
neck could be overcome, then experiments could be designed that 
may shed light on the stochastic nature of small nanocrystals in so-
lution and further advance our understanding of the basic physics 
governing colloidal nanoparticle assemblies.

MATERIALS AND METHODS
Synthesis of Pt nanocrystals
Pt nanocrystals of 2 to 3 nm in diameter were synthesized by mixing 
0.05 mmol (NH4)2Pt(II)Cl4 (99.995%, Sigma-Aldrich), 0.75 mmol 
of tetramethylammonium bromide (98%, Sigma-Aldrich), 1 mmol 
of polyvinylpyrrolidone (molecular weight of 29,000; Sigma-
Aldrich), and 10 ml of ethylene glycol in a three-neck round bottom 
flask. We heated the mixture to 160°C and kept it at 160°C for 20 min. 
After cooling the solution to room temperature, we added 90 ml of 
acetone to precipitate the particles. The product was centrifuged at 
4000 rpm for 5 min. We discarded the supernatant and redispersed 
the Pt nanocrystals redispersed in 5 mM Hepes buffer solution 
with pH 7.4.

Preparation of graphene liquid cells
We synthesized graphene on 25-μm-thick copper foil (99.8%, Alfa 
Aesar) by the chemical vapor deposition method. The copper foil in 

a quartz tube was heated to 1000°C for 30 min in hydrogen environ-
ment. Graphene was grown onto the copper foil with methane flows 
of 25 cm3/min and hydrogen flows of 10 cm3/min of at 1000°C. After 
20 min, the product was rapidly cooled to room temperature with 
methane flow. Graphene TEM grids were prepared by transferring 
the graphene to a holey carbon grid using the direct transfer meth-
od. The graphene-covered copper foil was treated with weak oxygen 
plasma to etch the graphene on one side of the foil. A Quantifoil grid 
(Ted Pella) was placed onto the other grid side, on which graphene 
was not etched. Next, the copper foil substrate was etched with am-
monium persulfate aqueous solution (0.1 g/ml). The graphene grid 
was washed with deionized water several times. The graphene liquid 
cell was fabricated with two graphene grids. A 0.5 μl of Pt nanocrys-
tal solution was loaded onto a graphene grid. The other graphene 
grid was gently laid on the graphene grid with the liquid sample, so 
that the liquid sample was sandwiched between the two graphene 
sheets. The sealing of the liquid sample is accomplished through the 
strong interaction between the two graphene surfaces.

Acquisition of TEM images
TEM movies of Pt nanocrystals in the graphene liquid cell were ob-
tained at a rate of 400 frames/s using TEAM I, an FEI Titan 80/300 
TEM equipped with a postspecimen geometric- and chromatic-
aberration corrector and a Gatan K2 IS direct electron detector. 
Thousands of images with 1920  ×  1728 pixels and 0.358-Å pixel 
resolution were acquired at a dose rate of ~17 e−/pixel·frame or be-
low at an acceleration voltage of 300 kV. The pixel size was con-
firmed on the basis of the known lattice spacing of the graphene 
sheets containing the nanocrystals. TEM images of rotating nano-
crystals were used in the 3D reconstruction process. Successful 3D 
reconstruction of nanoparticles that differ in size, composition, and 
solvating molecules requires extensive optimization of imaging con-
ditions, image processing, and reconstruction parameters. TEM im-
aging conditions must be optimized to obtain good signal-to-noise 
ratio of the 2D projected lattice for a given rotational rate, local 
thickness of the liquid, and image capture rate.

Denoising of the nanocrystal time trajectories 
through kernel-PCA
We previously used a deep autoencoding neural network architec-
ture for denoising of one nanocrystal time trajectory before 3D re-
construction (2). The network was trained on the entire field of view, 
most of which consists of the graphene layers and liquid background. 
Neural network–based denoising of such a high-dimensional dataset 
is extremely challenging and requires careful selection of the appro-
priate network architecture in conjunction with an appropriate train-
ing algorithm run on a powerful distributed computer architecture. 
Here, we introduce much simpler and more cost-effective approach 
that outperforms the deep learning approach in terms of the quality 
of the atomic-resolution maps produced and the temporal resolution 
obtainable. Instead of operating on the entire field of view, we use our 
previously developed particle tracker (7) in conjunction with total 
variation-based denoising (28) to robustly extract nanocrystal time 
trajectories, consisting of windowed 2D views of one particle in dif-
ferent 3D orientations. Next, these one-particle time trajectories are 
denoised by nonlinear dimensionality reduction through generative 
kernel–principal components analysis (PCA) (29). Given a stack of 
noisy nanoparticle images Pi, 1 ≤ i ≤ Np we use kernel-PCA to pro-
duce a stack of denoised nanoparticles images P̂i, 1 ≤ i ≤ Np . The 
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kernel-PCA algorithm is implemented based on a pre-imaging 
learning algorithm (30, 31) but uses the cosine similarity to derive 
the kernel and the corresponding optimization algorithm. The cosine 
similarity between two nanoparticle images Pi, Pj is defined as 
K
�
Pi, Pj

�
=

Pi ⋅Pj

‖Pi ‖ ‖Pj ‖
 . The kernel-PCA method involves:

1) Computing the kernel K between all pairs of noisy nanopar-
ticle images Pi, Pj.

2) Projecting each noisy nanoparticles image onto the kernel 
space to get the feature vectors.

3) Reducing the dimension of the kernel space using the stan-
dard singular value decomposition and a user-specified number of 
eigenvalues/eigenvectors to obtain feature vectors.

4) Back projecting the feature vectors with reduced dimensionality 
onto the image space to obtain the denoised nanoparticle images P̂i.

The kernel-PCA approach has only one free parameter: The num-
ber of eigenvectors used for dimensionality reduction. Moreover, a 
robust numerical solution to the model training problem is available 
through the singular value decomposition and the pre-imaging algo-
rithm (30, 31). We used 500 kernel-PCA eigenvectors for all datasets 
analyzed here. We empirically determined this number to give opti-
mal noise reduction while preserving high-resolution information. 
Training was done in parallel for up to 10 particle trajectories simul-
taneously on a standard workstation in less than an hour.

Periodic coupling of the unsupervised atomic model 
building to the iterative 3D orientation refinement
Instead of running hundreds of iterations of “classic” single-particle 
refinement (11, 13, 14), as we did in our previous studies (5–7), we 
now limit the number of iterations of 3D refinement to 10 before 
individual atomic densities are detected in the 3D reconstruction; 
spatial atomic coordinates derived; and a “clean” atomic density 
map, free from biasing background effects, is simulated and used to 
initialize another round of 3D refinement. These two phases of (i) 
classic single-particle 3D refinement and (ii) automated atomic 
model building and simulation of a “clean” 3D density for reinitial-
ization are iterated until convergence, which is typically obtained in 
three to four rounds.

Atomic density threshold detection across nanocrystals of 
different sizes and with different degree of crystallinity
We previously published the method for unsupervised atomic model 
building (17), but a critical change that we had to make to enable reli-
able model building across nanocrystals of different sizes and with 
different degree of crystallinity was in how the threshold for atom 
detection is calculated. CNs are often used for atom peak threshold-
ing (5, 32). However, CN-based thresholding cannot be used in unsu-
pervised approaches on its own because any procedure that would 
iteratively remove lowly coordinated atoms would eventually erode 
all the atomic positions. Therefore, we select TCN, which is the CN 
bound that includes 95% of the detected atomic positions, as an initial 
CN threshold. Next, we subjected the 15% of atoms furthest from the 
center of mass of the nanocrystal to the following procedure. First, all 
atoms with CN < TCN − 1 are removed. Next, we iteratively remove 
all atoms with CN < TCN and Rexp < Rtheoretical/2, where Rexp is the 
experimentally measured atomic radius and Rtheoretical is the theoreti-
cally derived atomic radius. This leads to a convergent thresholding 
procedure that is applicable across nanocrystals of different sizes and 
with different degree of crystallinity.

Adaptive nonuniform density map regularization 
based on ICMs
We introduce a method for nonuniform (local) regularization. 
Punjani et al. (33) put forward a general framework for optimization 
of the hyperparameters controlling the degree of smoothing intro-
duced by regularization or filtering techniques. This nonuniform 
regularization approach, when coupled to the twofold cross-validated 
3D refinement in CryoSPARC (12), provided adaptive regularization, 
thus addressing the issue that single-particle 3D refinement methods 
tend to simultaneously overfit and underfit datasets with large varia-
tions in local resolution due to flexibility or presence of disordered 
regions. This approach can be summarized as follows

1) Create low-pass–filtered representations of the even map us-
ing some uniform impulse-response function (cosine, Butter-
worth etc.).

2) Identify which filtered even map minimizes the Euclidean dis-
tance between each voxel and the corresponding voxel in the odd 
(raw) map.

3) Generate a nonuniformly filtered map by selecting the combi-
nation of optimally filtered voxels.

This approach recognizes that nonuniform regularization is in-
herently a real-space optimization problem, and it has proven to be 
superior to uniform regularization approaches in single-particle 3D 
refinement. Other nonuniform regularization approaches have also 
been developed for biomolecules that use deep neural networks in 
conjunction with prior structural information (34). Here, we intro-
duce an alternative method for nonuniform volume regularization 
based on iterated conditional modes (ICMs) (35, 36) for optimiza-
tion of map connectivity in real space. A Gibbs random field de-
scribes the statistical properties of an interconnected network of 
non-negative items (set of voxels). We restrict the regularization to 
spatial neighborhood dependencies, i.e., voxel connectivity (the way 
in which pixels in 3D images relate to their neighbors). ICM is a 
deterministic algorithm for obtaining a configuration of a local max-
imum of the joint probability of a Gibbs random field by iteratively 
maximizing the probability of each variable (voxel) conditioned on 
the others in the neighborhood. We obtain a noise volume through 
subtraction of the even map from the odd map, followed by estima-
tion of per-voxel noise SDs σi through voxel neighborhood analysis. 
We then apply ICM for nonuniform volume regularization of the 
even and odd maps independently in Algorithm 1 where λ = 0.1 is a 
regularization parameter. The discretization of the voxel values of 
the even and odd maps required for optimizing the local neighbor-
hood quadratic potential is done through vector quantization.

Strain analysis
We define strain as the relative deformation of the structure compared 
to an ideal FCC lattice structure. The strain is calculated through dif-
ferentiation of the displacement field (37). The displacement field is 

Algorithm 1. Iterated Conditional Modes. 
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defined as the ideal atomic positions subtracted from the experimen-
tally measured ones and interpolated using kernel density estimation 
(38). The relative atom positions ai , bi , and ci are determined through 
lattice fitting. Let rFCC,i represent the ideal FCC atomic position of 
atom i; rexp,i its experimentally measured position, and ei the residual 
of the fitting, then

where nx , nz,ny ∈ ℤ are normal vectors, a(0)
i
, b

(0)

i
, c

(0)

i
∈ ℝ are the 

unit cell vectors of bulk Pt, and the experimental unit cell vectors 
ai, bi , ci ∈ ℝ are determined through minimization of the sum of the 
square residuals. The displacement field ui of atom i is evaluated as

A Gaussian kernel is applied to generate a continuous function 
u(r)  of any vector position r

where σ = 2 Å is the SD of the Gaussian distribution, chosen based on 
leave-one-out cross-validation. The three displacement field compo-
nents ux , uy , uz are used to calculate the six 3D strain components

ϵxx, ϵyy , and ϵzz represent compression or expansion of the lattice 
in the x, y, and z dimensions, respectively. ϵxy, ϵyz , and ϵxz represent 
deformations with angular components. We calculated the radial 
strain using a similar approach, with the radial displacement field, 
u
(r)
i

 , and radial strain component, ϵrr , described as

Identification of a time-invariant core
We identified the atoms between the first temporal state and the sec-
ond temporal state in the trajectory that had displacements smaller 
than half of the theoretical diameter of a platinum atom. Next, we 
averaged these “common” atomic positions and used them to iden-
tify common atoms in the third temporal states and so on. Once we 
had identified this time-invariant core, we went back through the 
temporal states in the trajectory and identified, for each state, the 
common atoms. This subset of common atoms of identical size across 
all temporal states is defined as the time-invariant core of atoms.

Crystallinity score
We calculated all pairwise atomic distances for the atomic structure of 
the particle of interest and compared that with distribution of pairwise 
atomic distances obtained from a simulated nanoparticle with ideal 
FCC lattice structure, spherically truncated to the same diameter. Next, 
the two distributions of atomic distances were compared using the 
Kolmogorov-Smirnov test (39) to calculate the probability that the null 
hypothesis was true, i.e., that the samples are drawn from the same ref-
erence distribution. We used this probability as a crystallinity score.

Parallel code implementation
The workflow implemented in the latest version of the software suite 
SINGLE (7) can be summarized as follows:

1) Particle tracking and time-trajectory extraction.
2) Time-trajectory denoising with kernel-PCA.
3) Time-restrained 2D analysis for image quality assessment.
4) Time-averaged 3D reconstruction and identification of trial 

time window boundaries.
5) Regularized 3D reconstruction in time windows.
We invested large efforts into serial central processing unit (CPU) 

code optimization and design of efficient parallel implementations 
for the various steps of the workflow. Steps 1 to 3 can be distributed 
across network connected computing units (sets of CPU cores) that 
work independently of each other on one time-trajectory each. This 
kind of parallelization scales linearly with the number of computing 
units. On a standard CPU workstation, steps 1 to 3 can be accom-
plished within a few hours. Steps 3 and 4 typically take 20 min to an 
hour on a standard CPU workstation, depending on the image size 
and the total number of images in the time trajectory. Steps 3 and 4 
require some manual intervention for image quality assessment and 
trial time boundary selection, which typically involves less than half 
an hour of manual labor. Steps 4 and 5 have been optimized for 
shared-memory CPU architectures and are completed within a few 
hours using a handful of CPU cores (we typically use 12). We provide 
an implementation that generates individual scripts for each of the 
time trajectories that can be executed in a distributed computing en-
vironment using standard queue system software. While working on 
the 15 time trajectories used to generate the 66 atomic structures, 
there were many occasions where we needed to fix bugs or improve 
certain aspects of the 3D reconstruction code and rerun all the 3D 
reconstruction jobs. This was done at least 10 times in a timeframe 
of a few weeks without using any form of sophisticated distributed 
computing system. Hence, if equipped with a modern multicore 
CPU workstation, then it would be feasible to process hundreds of 
trajectories within a reasonable time frame. If running our codes on 
a distributed computing system, then this number could readily be 
scaled up by an order of magnitude. However, if such a large struc-
ture determination effort would be of interest to the community, it 
would be wise to invest some additional efforts into increased auto-
mation because steps 3 and 4 involve some manual intervention. 
Furthermore, the analysis of the reconstructed 3D density maps and 
their associated atomic coordinates would be cumbersome for so 
many structures, and increased automation would be necessary for 
efficient interpretation of maps and atomic coordinates.

Analyses of atomic structures
Visualization of 3D density maps and atomic coordinates were done 
in USCF Chimera (40). All quantitative structure analyses were done 
in the latest version of SINGLE (7).

rexp,i = nxai + nybi + nzci + ei

rFCC,i = nxa
(0)

i
+ nyb

(0)

i
+ nzc

(0)

i

ui = rexp,i − rFCC,i

u(r) =

∑
iui ⋅ exp

�
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This PDF file includes:
Tables S1 and S2
Figs. S1 to S3

REFERENCES AND NOTES
	 1.	 X. Ye, M. R. Jones, L. B. Frechette, Q. Chen, A. S. Powers, P. Ercius, G. Dunn, G. M. Rotskoff,  

S. C. Nguyen, V. P. Adiga, A. Zettl, E. Rabani, P. L. Geissler, A. P. Alivisatos, Single-particle 
mapping of nonequilibrium nanocrystal transformations. Science 354, 874–877 (2016).

	 2.	 S. Kang, J. Kim, S. Kim, H. Chun, J. Heo, C. F. Reboul, R. Meana-Pañeda, C. T. S. Van, H. Choi, 
Y. Lee, J. Rhee, M. Lee, D. Kang, B. H. Kim, T. Hyeon, B. Han, P. Ercius, W. C. Lee, H. Elmlund, 
J. Park, Time-resolved Brownian tomography of single nanocrystals in liquid during 
oxidative etching. Nat. Commun. 16, 1158 (2025).

	 3.	 J. Lee, J. Yang, S. G. Kwon, T. Hyeon, Nonclassical nucleation and growth of inorganic 
nanoparticles. Nat. Rev. Mater. 1, 16034 (2016).

	 4.	 K. C. Lai, Y. Han, P. Spurgeon, W. Y. Huang, P. A. Thiel, D. J. Liu, J. W. Evans, Reshaping, 
intermixing, and coarsening for metallic nanocrystals: Nonequilibrium statistical 
mechanical and coarse-grained modeling. Chem. Rev. 119, 6670–6768 (2019).

	 5.	 B. H. Kim, J. Heo, S. Kim, C. F. Reboul, H. Chun, D. Kang, H. Bae, H. Hyun, J. Lim, H. Lee,  
B. Han, T. Hyeon, A. P. Alivisatos, P. Ercius, H. Elmlund, J. Park, Critical differences in 3D 
atomic structure of individual ligand-protected nanocrystals in solution. Science 368, 
60–67 (2020).

	 6.	 J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, 
A. Zettl, A. P. Alivisatos, 3D structure of individual nanocrystals in solution by electron 
microscopy. Science 349, 290–295 (2015).

	 7.	C . F. Reboul, J. Heo, C. Machello, S. Kiesewetter, B. H. Kim, S. Kim, D. Elmlund, P. Ercius,  
J. Park, H. Elmlund, SINGLE: Atomic-resolution structure identification of nanocrystals by 
graphene liquid cell EM. Sci. Adv. 7, eabe6679 (2021).

	 8.	D . Elmlund, H. Elmlund, Cryogenic electron microscopy and single-particle analysis. 
Annu. Rev. Biochem. 84, 499–517 (2015).

	 9.	 A. Stewart, N. Grigorieff, Noise bias in the refinement of structures derived from single 
particles. Ultramicroscopy 102, 67–84 (2004).

	 10.	 W. S. Tang, E. D. Zhong, S. M. Hanson, E. H. Thiede, P. Cossio, Conformational 
heterogeneity and probability distributions from single-particle cryo-electron 
microscopy. Curr. Opin. Struct. Biol. 81, 102626 (2023).

	 11.	 S. H. Scheres, RELION: Implementation of a Bayesian approach to cryo-EM structure 
determination. J. Struct. Biol. 180, 519–530 (2012).

	 12.	 A. Punjani, J. L. Rubinstein, D. J. Fleet, M. A. Brubaker, cryoSPARC: Algorithms for rapid 
unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

	 13.	N . Grigorieff, FREALIGN: High-resolution refinement of single particle structures.  
J. Struct. Biol. 157, 117–125 (2007).

	 14.	C . F. Reboul, S. Kiesewetter, M. Eager, M. Belousoff, T. Cui, H. De Sterck, D. Elmlund,  
H. Elmlund, Rapid near-atomic resolution single-particle 3D reconstruction with SIMPLE. 
J. Struct. Biol. 204, 172–181 (2018).

	 15.	 P. Ercius, M. Boese, T. Duden, U. Dahmen, Operation of TEAM I in a user environment at 
NCEM. Microsc. Microanal. 18, 676–683 (2012).

	 16.	H . P. Erickson, A. Klug, The Fourier transform of an electron micrograph: Effects of 
defocussing and aberrations, and implications for the use of underfocus contrast 
enhancement. Ber. Bunsenges. Phys. Chem. 74, 1129–1137 (1970).

	 17.	H . Wietfeldt, R. Meana-Paneda, C. Machello, C. F. Reboul, C. T. S. Van, S. Kim, J. Heo,  
B. H. Kim, S. Kang, P. Ercius, J. Park, H. Elmlund, Small, solubilized platinum nanocrystals 
consist of an ordered core surrounded by mobile surface atoms. Commun. Chem. 7, 4 (2024).

	 18.	 P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund,  
H. Ogasawara, M. F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed 
core-shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

	 19.	 X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, X. Duan, 
T. Mueller, Y. Huang, High-performance transition metal-doped Pt3Ni octahedra for 
oxygen reduction reaction. Science 348, 1230–1234 (2015).

	 20.	 M. Mavrikakis, B. Hammer, J. K. Norskov, Effect of strain on the reactivity of metal surfaces. 
Phys. Rev. Lett. 81, 2819–2822 (1998).

	 21.	 P. D. Howes, R. Chandrawati, M. M. Stevens, Bionanotechnology., Colloidal nanoparticles 
as advanced biological sensors. Science 346, 1247390 (2014).

	 22.	 M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: Particle size 
effect on oxygen reduction reaction activity. Nano Lett. 11, 3714–3719 (2011).

	 23.	 R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, Particle size effects in the catalytic 
electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

	 24.	 G. Prieto, J. Zecevic, H. Friedrich, K. P. de Jong, P. E. de Jongh, Towards stable catalysts by 
controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 
(2013).

	 25.	H . Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top 
gold atom on palladium nanocluster. Nat. Mater. 11, 49–52 (2011).

	 26.	N . Bohr, On the series spectra of elements. Z. Phys. 2, 423–469 (1920).
	 27.	 P. Jena, Q. Sun, Super atomic clusters: Design rules and potential for building blocks of 

materials. Chem. Rev. 118, 5755–5870 (2018).
	 28.	L . I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. 

Phys. D: Nonlinear Phenom. 60, 259–268 (1992).
	 29.	 A. M. Jade, B. Srikanth, V. K. Jayaraman, B. D. Kulkarni, J. P. Jog, L. Priya, Feature extraction 

and denoising using kernel PCA. Chem. Eng. Sci. 58, 4441–4448 (2003).
	 30.	 J. W. Gökhan H. Bakır, B. Schölkopf, in Proceedings of the 17th International Conference on 

Neural Information Processing Systems (NIPS’03) (MIT Press, 2003), pp. 449–456.
	 31.	 A. Cloninger, W. Czaja, T. Doster, The pre-image problem for Laplacian Eigenmaps utilizing 

L1 regularization with applications to data fusion. Inverse Problems 33, 074006 (2017).
	 32.	 S. Kim, J. Kwag, C. Machello, S. Kang, J. Heo, C. F. Reboul, D. Kang, S. Kang, S. Shim,  

S. J. Park, B. H. Kim, T. Hyeon, P. Ercius, H. Elmlund, J. Park, Correlating 3D surface atomic 
structure and catalytic activities of Pt nanocrystals. Nano Lett. 21, 1175–1183 (2021).

	 33.	 A. Punjani, H. Zhang, D. J. Fleet, Non-uniform refinement: Adaptive regularization 
improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

	 34.	 B. Shi, K. Zhang, D. J. Fleet, R. A. McLeod, R. J. Dwayne Miller, J. Y. Howe, Deep generative 
priors for biomolecular 3D heterogeneous reconstruction from cryo-EM projections.  
J. Struct. Biol. 216, 108073 (2024).

	 35.	 R. M. Taylor, Bayesian Compressive Sensing Using Iterated Conditional Modes. in 2011 
IEEE International Workshop on Machine Learning for Signal Processing (IEEE, 2011).

	 36.	V . Pungpapong, M. Zhang, D. B. Zhang, Selecting massive variables using an iterated 
conditional modes/medians algorithm. Electron. J. Stat. 9, 1243–1266 (2015).

	 37.	 M. J. Hytch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain 
fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

	 38.	 R. Xu, C. C. Chen, L. Wu, M. C. Scott, W. Theis, C. Ophus, M. Bartels, Y. Yang,  
H. Ramezani-Dakhel, M. R. Sawaya, H. Heinz, L. D. Marks, P. Ercius, J. Miao, Three-
dimensional coordinates of individual atoms in materials revealed by electron 
tomography. Nat. Mater. 14, 1099–1103 (2015).

	 39.	 F. J. Massey, The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 46, 
68–78 (1951).

	 40.	E . F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng,  
T. E. Ferrin, UCSF chimera - A visualization system for exploratory research and analysis.  
J. Comput. Chem. 25, 1605–1612 (2004).

Acknowledgments 
Funding: R.M.-P., C.J., C.T.S.V., C.F.R., and H.E. were supported by the Intramural Research 
Program of the NIH. C.J., W.C., and H.E. were supported by the NCI-UMD Partnership for 
Integrative Cancer Research. J.P. received support from the Samsung Science and Technology 
Foundation under project no. SSTF-BA2302-06. J.P. also received support from the Institute for 
Basic Science (IBS-R006-D1) and the National Research Foundation of Korea (NRF) grants 
funded by the Korean government (Ministry of Science and ICT) (nos. RS-2024- 00449965, 
RS-2024-00467226, and RS-2024-00421181). Experiments were performed at the Molecular 
Foundry, Lawrence Berkeley National Laboratory, which is supported by the US Department of 
Energy under contract no. DE-AC02-05CH11231. Author contributions: Conception/design of 
the work: P.E., W.C., J.P., and H.E. Software design: R.M.-P., C.J., C.T.S.V., C.F.R., and H.E. Data 
acquisition: P.E. All authors contributed to analysis/interpretation of data/results and writing of 
the manuscript. Competing interests: The authors declare that they have no competing 
interests. Data and materials availability: The 3D density maps and atomic coordinates 
supporting our findings are available at https://zenodo.org/records/15531575. The software 
that was used in this study is available at https://zenodo.org/records/15594642. All other data 
needed to evaluate the conclusions of the paper are present in the paper and/or the 
Supplementary Materials.

Submitted 10 April 2025 
Accepted 11 July 2025 
Published 6 August 2025 
10.1126/sciadv.ady1413

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 10, 2025

https://zenodo.org/records/15531575
https://zenodo.org/records/15594642

	Time-resolved atomic-resolution Brownian tomography of single nanocrystals reveals size-dependent dynamics
	INTRODUCTION
	RESULTS
	Time-resolved atomic-resolution 3D reconstruction of 15 nanocrystal time trajectories

	DISCUSSION
	MATERIALS AND METHODS
	Synthesis of Pt nanocrystals
	Preparation of graphene liquid cells
	Acquisition of TEM images
	Denoising of the nanocrystal time trajectories through kernel-PCA
	Periodic coupling of the unsupervised atomic model building to the iterative 3D orientation refinement
	Atomic density threshold detection across nanocrystals of different sizes and with different degree of crystallinity
	Adaptive nonuniform density map regularization based on ICMs
	Strain analysis
	Identification of a time-invariant core
	Crystallinity score
	Parallel code implementation
	Analyses of atomic structures

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


